Abstract

In this work, a first-of-its-kind fully integrated tri-modality system that combines fluorescence, diffuse optical and x-ray tomography (FT/DOT/XCT) into the same setting is presented. The purpose of this system is to perform quantitative fluorescence tomography using multi-modality imaging approach. XCT anatomical information is used as structural priori while optical background heterogeneity information obtained by DOT measurements is used as functional priori. The performance of the hybrid system is evaluated using multi-modality phantoms. In particular, we show that a 2.4 mm diameter fluorescence inclusion located in a heterogeneous medium can be localized accurately with the functional a priori information, although the fluorophore concentration is recovered with 70% error. On the other hand, the fluorophore concentration can be accurately recovered within 8% error only when both DOT optical background functional and XCT structural a priori information are utilized to guide and constrain the FT reconstruction algorithm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
    [CrossRef] [PubMed]
  2. C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
    [CrossRef] [PubMed]
  3. X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
    [CrossRef] [PubMed]
  4. Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
    [CrossRef] [PubMed]
  5. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
    [CrossRef] [PubMed]
  6. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
    [CrossRef] [PubMed]
  7. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
    [CrossRef] [PubMed]
  9. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
    [CrossRef] [PubMed]
  10. X. Zhang, C. Badea, M. Jacob, and G. A. Johnson, “Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging,” Proc. Soc. Photo Opt. Instrum. Eng. 7 191, nihpa106691 (2009).
  11. S. Azman, J. Gjaerum, D. Meier, L. T. Muftuler, G. Maehlum, O. Nalcioglu, B. E. Patt, B. Sundal, M. Szawlowski, B. M. W. Tsui, D. J. Wagenaar, and Y. Wang, “A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging, ” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2007), pp. 2311–17.
  12. O. Nalcioglu, T. Muftuler, D. Wagenaar, M. Szawlowski, M. Kapusta, N. Pawlov, G. Maehlum, and P. Patt, “Development of MR-Compatible SPECT System: A Feasibility Study,” presented at Annual Meeting of the ISMRM, Berlin, Germany, 19–25 May 2007.
  13. O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.
  14. D. Wagenaar, O. Nalcioglu, L. Muftuler, M. Szawlowski, M. Kapusta, N. Pawlov, D. Meier, G. Maehlum, and B. Patt, “Development of MRI-Compatible Nuclear Medicine Imaging Detectors,” in IEEE Nuclear Science Symposium and Medical Imaging Conference. (IEEE, 2006), pp. 1825–28.
  15. M. F. Di Carli, “Hybrid imaging: integration of nuclear imaging and cardiac CT,” Cardiol. Clin. 27(2), 257–263 (2009).
    [CrossRef] [PubMed]
  16. S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009).
    [PubMed]
  17. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
    [CrossRef] [PubMed]
  18. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
    [CrossRef] [PubMed]
  19. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
    [CrossRef] [PubMed]
  20. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
    [CrossRef]
  21. H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
    [CrossRef] [PubMed]
  22. G. Gulsen, M. B. Unlu, O. Birgul, and O. Nalcioglu, “Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system,” Proc. SPIE 6431, (2007).
  23. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
    [PubMed]
  24. O. Birgul, G. Gulsen, R. Shafiiha, M. B. Unlu, and O. Nalcioglu, “In vivo Small Animal Imaging using Combined MR-DOT System,” in Biomedical Optics Topical Meeting, Technical Digest (Optical Society of America, 2006), paper TuG1.
  25. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
    [CrossRef] [PubMed]
  26. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
    [CrossRef] [PubMed]
  27. Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
    [CrossRef] [PubMed]
  28. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
    [CrossRef] [PubMed]
  29. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
    [CrossRef] [PubMed]
  30. A. da Silva, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltie, and P. Rizo, “Coupling X-ray and optical tomography systems for in vivo examination of small animals,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2007), pp. 3335–3338.
  31. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48(10), D151–D162 (2009).
    [CrossRef] [PubMed]
  32. R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, R. Söhngen, M. Zientkowska, and V. Ntziachristos, “Hybrid fluorescence tomography/x-ray tomography improves reconstruction quality,” in Proc. SPIE 7370 (2009).
  33. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
    [CrossRef]
  34. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  35. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
    [CrossRef] [PubMed]
  36. Y. Lin, H. Yan, G. Gulsen, and O. Nalcioglu, “Dual-modality molecular imaging for small animals using fluorescence and x-ray computed tomography,” in Proc. SPIE 7370 (2009).
  37. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
    [CrossRef] [PubMed]
  38. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
    [CrossRef] [PubMed]
  39. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
    [CrossRef] [PubMed]
  40. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
    [CrossRef] [PubMed]
  41. C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
    [CrossRef] [PubMed]
  42. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
    [CrossRef] [PubMed]
  43. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
    [CrossRef] [PubMed]
  44. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
    [CrossRef] [PubMed]
  45. D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
    [CrossRef] [PubMed]
  46. E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
    [CrossRef] [PubMed]
  47. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  48. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
    [CrossRef] [PubMed]
  49. D. P. Cormode, P. A. Jarzyna, W. J. M. Mulder, and Z. A. Fayad, “Modified natural nanoparticles as contrast agents for medical imaging,” Adv. Drug Deliv. Rev. (2009)

2009 (6)

M. F. Di Carli, “Hybrid imaging: integration of nuclear imaging and cardiac CT,” Cardiol. Clin. 27(2), 257–263 (2009).
[CrossRef] [PubMed]

S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009).
[PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48(10), D151–D162 (2009).
[CrossRef] [PubMed]

2008 (5)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
[CrossRef] [PubMed]

D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

2007 (7)

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

2006 (3)

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

2005 (6)

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

2004 (2)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
[CrossRef] [PubMed]

2003 (2)

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

2001 (2)

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[CrossRef]

1999 (2)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

1997 (1)

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

1990 (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Alavi, A.

S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009).
[PubMed]

Arridge, S. R.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Basu, S.

S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009).
[PubMed]

Berger, M.

Birgul, O.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

Boas, D. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

Bordy, T.

Bouman, C. A.

Boutet, J.

Boverman, G.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Bredow, S.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

Bremer, C.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

Brooks, D. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Carp, S. A.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Carpenter, C. M.

Chen, X.

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
[CrossRef] [PubMed]

Cheng, Z.

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

Coll, J. L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Conti, P. S.

X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
[CrossRef] [PubMed]

Da Silva, A.

Davis, S. C.

Debourdeau, M.

Dehghani, H.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Deliolanis, N.

Di Carli, M. F.

M. F. Di Carli, “Hybrid imaging: integration of nuclear imaging and cardiac CT,” Cardiol. Clin. 27(2), 257–263 (2009).
[CrossRef] [PubMed]

Dinten, J. M.

Doyley, M.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Driol, C.

Dunn, J. F.

Eppstein, M. J.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
[CrossRef] [PubMed]

Fang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Gambhir, S. S.

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Godavarty, A.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

Gruber, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Gulsen, G.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

Ha, S.-H.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Hamamura, M.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Hebden, J. C.

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Hervé, L.

Hutchins, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Hyde, D.

Hypnarowski, J.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Jiang, H.

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

Jiang, S.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Josserand, V.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Kepshire, D.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
[CrossRef] [PubMed]

Kepshire, D. S.

Khayat, M.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Koenig, A.

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Kopans, D. B.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Lasser, T.

Leabad, M.

Leblond, F.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Lin, Y.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Mahmood, U.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Meier, D.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Millane, R. P.

Miller, E. L.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Milstein, A. B.

Mincu, N.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

Moats, R. A.

X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
[CrossRef] [PubMed]

Moore, R. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Muftuler, T.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Nalcioglu, O.

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Ntziachristos, V.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[CrossRef]

Oh, S.

Patt, B.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Paulsen, K. D.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Peltié, P.

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Pogue, B. W.

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

D. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Fluorescence tomography characterization for sub-surface imaging with protoporphyrin IX,” Opt. Express 16(12), 8581–8593 (2008).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express 15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Poplack, S. P.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Ripoll, J.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

Rizo, P.

Roeck, W.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Selb, J.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
[CrossRef] [PubMed]

Shafiiha, R.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

Sobel, E. S.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

Soubret, A.

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, “Free-space fluorescence molecular tomography utilizing 360°geometry projections,” Opt. Lett. 32(4), 382–384 (2007).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Tan, Y.

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Tung, C. H.

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

Turner, G.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

Unlu, M. B.

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

Wagenaar, D.

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Wang, J.

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

Weaver, J. B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Webb, K. J.

Weissleder, R.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26(12), 893–895 (2001).
[CrossRef]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

Wu, Y.

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Xiong, Z.

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

Xu, H.

Yalavarthy, P. K.

Yan, H.

Yessayan, D.

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

Yuan, Z.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8(1), 1–33 (2006).
[CrossRef] [PubMed]

Appl. Opt. (8)

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42(16), 3081–3094 (2003).
[CrossRef] [PubMed]

H. Xu, R. Springett, H. Dehghani, B. W. Pogue, K. D. Paulsen, and J. F. Dunn, “Magnetic-resonance-imaging-coupled broadband near-infrared tomography system for small animal brain studies,” Appl. Opt. 44(11), 2177–2188 (2005).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47(12), 2011–2016 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt. 46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

Y. Lin, H. Yan, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography with functional and structural a priori information,” Appl. Opt. 48(7), 1328–1336 (2009).
[CrossRef] [PubMed]

A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt. 48(10), D151–D162 (2009).
[CrossRef] [PubMed]

Bioconjug. Chem. (2)

C. H. Tung, S. Bredow, U. Mahmood, and R. Weissleder, “Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging,” Bioconjug. Chem. 10(5), 892–896 (1999).
[CrossRef] [PubMed]

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, “Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice,” Bioconjug. Chem. 16(6), 1433–1441 (2005).
[CrossRef] [PubMed]

Cancer Res. (1)

X. Chen, P. S. Conti, and R. A. Moats, “In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts,” Cancer Res. 64(21), 8009–8014 (2004).
[CrossRef] [PubMed]

Cardiol. Clin. (1)

M. F. Di Carli, “Hybrid imaging: integration of nuclear imaging and cardiac CT,” Cardiol. Clin. 27(2), 257–263 (2009).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging 24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

E. E. Graves, D. Yessayan, G. Turner, R. Weissleder, and V. Ntziachristos, “Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography,” J. Biomed. Opt. 10(4), 44019 (2005).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt. 10(5), 051504 (2005).
[CrossRef] [PubMed]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13(4), 044006 (2008).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

O. Nalcioglu, W. Roeck, M. Hamamura, S.-H. Ha, T. Muftuler, D. Wagenaar, D. Meier, and B. Patt, “Development of An MR-Compatible SPECT System (MRSPECT): A Feasibility Study,” J. Nucl. Med. submitted.

Med. Phys. (3)

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys. 29(5), 803–809 (2002).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30(5), 901–911 (2003).
[CrossRef] [PubMed]

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, “Three-dimensional fluorescence lifetime tomography,” Med. Phys. 32(4), 992–1000 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov., “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17(4), 375–378 (1999).
[CrossRef] [PubMed]

Nucl. Med. Rev. Cent. East. Eur. (1)

S. Basu and A. Alavi, “Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care,” Nucl. Med. Rev. Cent. East. Eur. 12(1), 1–13 (2009).
[PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (3)

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

S. R. Arridge and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42(5), 841–853 (1997).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, “Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study,” Phys. Med. Biol. 52(18), 5569–5585 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(23), 8828–8833 (2006).
[CrossRef] [PubMed]

Radiology (1)

C. Bremer, S. Bredow, U. Mahmood, R. Weissleder, and C. H. Tung, “Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model,” Radiology 221(2), 523–529 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum. 80(4), 043701 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum. 79(6), 064302 (2008).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast,” Rev. Sci. Instrum. 75(12), 5262–5270 (2004).
[CrossRef]

Technol. Cancer Res. Treat. (1)

G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined Diffuse Optical Tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363 (2006).
[PubMed]

Other (10)

O. Birgul, G. Gulsen, R. Shafiiha, M. B. Unlu, and O. Nalcioglu, “In vivo Small Animal Imaging using Combined MR-DOT System,” in Biomedical Optics Topical Meeting, Technical Digest (Optical Society of America, 2006), paper TuG1.

G. Gulsen, M. B. Unlu, O. Birgul, and O. Nalcioglu, “Simultaneous monitoring of multiple contrast agents using a hybrid MR-DOT system,” Proc. SPIE 6431, (2007).

D. Wagenaar, O. Nalcioglu, L. Muftuler, M. Szawlowski, M. Kapusta, N. Pawlov, D. Meier, G. Maehlum, and B. Patt, “Development of MRI-Compatible Nuclear Medicine Imaging Detectors,” in IEEE Nuclear Science Symposium and Medical Imaging Conference. (IEEE, 2006), pp. 1825–28.

X. Zhang, C. Badea, M. Jacob, and G. A. Johnson, “Development of a noncontact 3-D fluorescence tomography system for small animal in vivo imaging,” Proc. Soc. Photo Opt. Instrum. Eng. 7 191, nihpa106691 (2009).

S. Azman, J. Gjaerum, D. Meier, L. T. Muftuler, G. Maehlum, O. Nalcioglu, B. E. Patt, B. Sundal, M. Szawlowski, B. M. W. Tsui, D. J. Wagenaar, and Y. Wang, “A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging, ” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2007), pp. 2311–17.

O. Nalcioglu, T. Muftuler, D. Wagenaar, M. Szawlowski, M. Kapusta, N. Pawlov, G. Maehlum, and P. Patt, “Development of MR-Compatible SPECT System: A Feasibility Study,” presented at Annual Meeting of the ISMRM, Berlin, Germany, 19–25 May 2007.

A. da Silva, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltie, and P. Rizo, “Coupling X-ray and optical tomography systems for in vivo examination of small animals,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (IEEE, 2007), pp. 3335–3338.

R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, R. Söhngen, M. Zientkowska, and V. Ntziachristos, “Hybrid fluorescence tomography/x-ray tomography improves reconstruction quality,” in Proc. SPIE 7370 (2009).

Y. Lin, H. Yan, G. Gulsen, and O. Nalcioglu, “Dual-modality molecular imaging for small animals using fluorescence and x-ray computed tomography,” in Proc. SPIE 7370 (2009).

D. P. Cormode, P. A. Jarzyna, W. J. M. Mulder, and Z. A. Fayad, “Modified natural nanoparticles as contrast agents for medical imaging,” Adv. Drug Deliv. Rev. (2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 2
Fig. 2

(a) The picture of the system from the side view showing the XCT counterpart. The x-ray source (top) and the flat panel detector (bottom) are positioned on a rotating gantry. All the electrical connections transferred to the gantry using wire harness belts. (b) The picture of the system from the front view showing the FT/DOT components.

Fig. 1
Fig. 1

(a) The schematic of the multi-modality gantry-based system. The XCT gantry was expanded and optical imaging components were installed. A sample holder was designed to translate the sample between XCT and optical imaging systems. The components that are seen in the diagram: (1) the sample holder, (2) x-ray source, (3) x-ray detector, (4) CCD camera, (5) filter wheel, (6) lens, (7) phantom, (8) fiber optic collimator, (9) optical fibers, (10) fiber optic switch. (b) The light delivery components. On-off switches were used to select the desired illumination wavelength. A 50/50 fiber optic coupler was used to combine both laser output. A 1 x 3 fiber optic switch allowed the sequential activation of any one the three source sites.

Fig. 3
Fig. 3

a) The trans-axial XCT image of the phantom. The ICG inclusion is held in the glass tube that is seen as a bright circle in the image. b) The plot of the recovered ICG concentration with respect to true ICG concentration. The blue and purple dots represent the recovered values with and without the structural a priori information, respectively. The least squares lines of best fit are the red dashed ones. The recovered ICG concentration shows a linear response with respect to true ICG concentration both with and without the structural a priori information. However, the right values are recovered only when structural a priori information is available.

Fig. 4
Fig. 4

The reconstructed ICG concentration maps without (left column) and with (right column) structural a priori information from XCT for the first phantom study. The color bars all have units of nM.

Fig. 5
Fig. 5

The results for the second phantom study. The first column is the XCT trans-axial images of the phantoms. The size and location of the inclusion are different for each case. The second the third columns are the reconstructed ICG concentration maps without and with the XCT structural a priori information, respectively. As seen in the images, the recovered ICG concentration value depends drastically on the size and location of the inclusion. However, the true value can be recovered for all four cases when XCT structural a priori information is used. The color bars all have the units of nM.

Fig. 6
Fig. 6

(a) The XCT trans-axial image of the heterogeneous phantom. b) The reconstructed absorption map at 785 nm using DOT measurements. The reconstructed ICG concentration maps without any a priori information (c), with functional a priori information alone (d), and with both functional and structural a priori information (e). The profile plot along the x-axis across the reconstructed fluorescence object (indicated by the dashed white line) for each case is superimposed and shown in (f). The profile plot along the x-axis across the glass tube (indicated by yellow dashed line in the XCT image) is also shown in (g).

Fig. 7
Fig. 7

The reconstructed ICG concentration maps without (a) and with (b) XCT structural a priori information. The profile plot along the x-axis across the reconstructed fluorescence object (indicated by the dashed white line) for each case is superimposed and shown in (c).

Fig. 8
Fig. 8

(a) The XCT trans-axial image of the phantom with two ICG inclusions. (b) and (c) The reconstructed ICG concentration maps without and with XCT structural a priori information. Without XCT structural a priori information, the object closer to the surface dominates in the image. On the other hand, both ICG inclusions can be accurately recovered when XCT structural a priori information is used.

Tables (1)

Tables Icon

Table 1 The recovered ICG concentrations for phantom study 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ D x ( r ) Φ x ( r ) ] μ a x ( r ) Φ x ( r ) = q 0 ( r )
[ D m ( r ) Φ m ( r ) ] μ a m ( r ) Φ m ( r ) = Φ x ( r ) η μ a f ( r )
ε 2 ( μ a ) = i = 1 N s j = 1 N d ( ϕ i j m P i j ( μ a ) ) 2
ε 2 ( μ a f ) = i = 1 N s j = 1 N d ( ϕ i j m P i j ( μ a f ) ) 2
X m + 1 = X m + ( J T J + λ I ) 1 ( J T ε )
L i j = { 0 1 / N r 1 if i and j are not in the same region if i and j are in the same region if i = j
X m + 1 = X m + ( J T J + λ L T L ) 1 ( J T ε )
F c a l i b r a t e d = F m e a s u r e d F homo _ m e a s u r e d × F homo _ f o r w

Metrics