Abstract

We report the first higher-order-mode fiber with anomalous dispersion at 800nm and demonstrate its potential in femtosecond pulse delivery for Ti:Sapphire femtosecond lasers. We obtain 125fs pulses after propagating a distance of 3.6 meters in solid-silica fiber. The pulses could be further compressed in a quartz rod to nearly chirp-free 110fs pulses. Femtosecond pulse delivery is achieved by launching the laser output directly into the delivery fiber without any pre-chirping of the input pulse. The demonstrated pulse delivery scheme suggests scaling to >20meters for pulse delivery in harsh environments not suited for oscillator operation or in applications that require long distance flexibility.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  3. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27(17), 1513–1515 (2002).
    [CrossRef]
  4. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express 17(3), 1240–1247 (2009).
    [CrossRef] [PubMed]
  5. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30(23), 3225–3227 (2005).
    [CrossRef] [PubMed]
  6. F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express 12(5), 835–840 (2004).
    [CrossRef] [PubMed]
  7. J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
    [CrossRef]
  8. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31(17), 2532–2534 (2006).
    [CrossRef] [PubMed]
  9. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett. 32(16), 2372–2374 (2007).
    [CrossRef] [PubMed]
  10. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15(11), 6623–6628 (2007).
    [CrossRef] [PubMed]
  11. L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Palsdottir, Optimization of higher order mode fibers for dispersion management of femtosecond fiber lasers”, Proc. SPIE, Fiber Lasers V: Technology, Systems, and Applications, 6873_25 (2008)
  12. S. Ramachandran and M. F. Yan, “Static and tunable dispersion management with higher order mode fibers”, in Fiber Based Dispersion Compensation, S. Ramachandran, ed. (Springer, New York, 2007)
  13. D. Müller, J. West, and K. Koch, Interferometric chromatic dispersion measurement of a photonic band-gap fiber”, Proc. SPIE, Active and passive optical components for WDM communications II, 4870, 395 (2002)
  14. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27(9), 698–700 (2002).
    [CrossRef]
  15. C. Schmidt, S. Galmi, P. Balling, S. Ramachandran, and J. W. Nichilson, Enhanced resolution in nonlinear microscopy using the LP02 mode of an optical fiber”, accepted for The Conference on Lasers and Electro-Optics (CLEO) (2010)

2009 (1)

2008 (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (2)

2004 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (2)

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Brock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Campbell, S.

Cheng, Z.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Dimarcello, F. V.

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Foster, M. A.

Gaeta, A. L.

Ghalmi, S.

Hofer, M.

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Jasapara, J.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Knight, J. C.

Kracht, D.

Le, T.

Luan, F.

Mangan, B. J.

Moll, K. D.

Monberg, E.

Nicholson, J. W.

Ouzounov, D. G.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Prochnow, O.

Ramachandran, S.

Reid, D. T.

Roberts, P. J.

Ruehl, A.

Russell, P. St. J.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Schultz, M.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Steinmeyer, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Stingl, A.

Tempea, G.

Wandt, D.

Wang, Z.

Webb, W. W.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Williams, D. P.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wisk, P.

Xiao, D.

Yan, M.

Yan, M. F.

Zipfel, W. R.

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Brock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Other (4)

L. Grüner-Nielsen, S. Ramachandran, K. Jespersen, S. Ghalmi, M. Garmund, and B. Palsdottir, Optimization of higher order mode fibers for dispersion management of femtosecond fiber lasers”, Proc. SPIE, Fiber Lasers V: Technology, Systems, and Applications, 6873_25 (2008)

S. Ramachandran and M. F. Yan, “Static and tunable dispersion management with higher order mode fibers”, in Fiber Based Dispersion Compensation, S. Ramachandran, ed. (Springer, New York, 2007)

D. Müller, J. West, and K. Koch, Interferometric chromatic dispersion measurement of a photonic band-gap fiber”, Proc. SPIE, Active and passive optical components for WDM communications II, 4870, 395 (2002)

C. Schmidt, S. Galmi, P. Balling, S. Ramachandran, and J. W. Nichilson, Enhanced resolution in nonlinear microscopy using the LP02 mode of an optical fiber”, accepted for The Conference on Lasers and Electro-Optics (CLEO) (2010)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dispersion curves as calculated from the refractive index profile of the fiber preform of LP02 HOM and LP01 fundamental mode. Also shown is the calculated dispersion of the single mode fiber ClearLite 780-11. Dotted curves are corresponding dispersion curves measured with a white light interferometer.

Fig. 2
Fig. 2

Solid-silica fiber module for femtosecond pulse delivery.

Fig. 3
Fig. 3

Transmission and MultiPath Interference (MPI) calculated in 3nm wavelength intervals.

Fig. 4
Fig. 4

Left: Ti:Sapphire femtosecond laser with a 3.6m fiber delivery. PC is polarization control and AC is a fringe resolved autocorrelator. Right: Dispersion map of fiber delivery.

Fig. 5
Fig. 5

Fringe resolved autocorrelation and spectrum of the fiber delivery output. The FWHM pulse duration is 110fs, and the fiber delivery is a 3.6m solid-silica HOM fiber module.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L D = 2 π c T 0 2 λ 2 | D |       L N L = λ A e f f 2 π n 2 P 0 ,

Metrics