Abstract

We demonstrate optical performance monitoring of in-band optical signal to noise ratio (OSNR) and residual dispersion, at bit rates of 40Gb/s, 160Gb/s and 640Gb/s, using slow-light enhanced optical third harmonic generation (THG) in a compact (80µm) dispersion engineered 2D silicon photonic crystal waveguide. We show that there is no intrinsic degradation in the enhancement of the signal processing at 640Gb/s relative to that at 40Gb/s, and that this device should operate well above 1Tb/s. This work represents a record 16-fold increase in processing speed for a silicon device, and opens the door for slow light to play a key role in ultra-high bandwidth telecommunications systems.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007
  2. B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).
  3. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
    [CrossRef]
  4. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  5. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006).
    [CrossRef] [PubMed]
  6. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  7. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
    [CrossRef]
  8. M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
    [CrossRef] [PubMed]
  9. B. Metcalfe, Toward Terabit Ethernet, Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223 .
  10. E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
    [CrossRef] [PubMed]
  11. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
    [CrossRef]
  12. D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  13. T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
    [CrossRef]
  14. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  15. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  16. M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  17. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  18. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [CrossRef] [PubMed]
  19. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  20. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [CrossRef]
  21. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  22. M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
    [CrossRef]
  23. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  24. T. F. Krauss, ““Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
    [CrossRef]
  25. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  26. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  27. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007).
    [CrossRef] [PubMed]
  28. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
    [CrossRef] [PubMed]
  29. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
    [CrossRef]
  30. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  31. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
    [CrossRef] [PubMed]
  32. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
    [CrossRef] [PubMed]
  33. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [CrossRef]
  34. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
    [CrossRef] [PubMed]
  35. J. F. McMillan, X. D. Yang, N. C. Panoiu, R. M. Osgood, and C. W. Wong, “Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides,” Opt. Lett. 31(9), 1235–1237 (2006).
    [CrossRef] [PubMed]
  36. L. O’Faolain, J. Li, T. P. White, A.Gomez-Iglesias, and T.F.Krauss, “Low Loss Dispersion Engineered Photonic Crystal Waveguides for Optical Delay Lines,” Group IV Photonics proceedings, pg 40 (2009).
  37. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
    [CrossRef] [PubMed]
  38. S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
    [CrossRef]
  39. D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
    [CrossRef]
  40. Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
    [CrossRef]
  41. T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
    [CrossRef] [PubMed]
  42. L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation,” J. Lightwave Technol. 20(12), 2136–2144 (2002).
    [CrossRef]
  43. B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
    [CrossRef]
  44. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [CrossRef]
  45. T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
    [CrossRef]
  46. T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
    [CrossRef]
  47. T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
    [CrossRef]
  48. P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
    [CrossRef]
  49. T. P. White, L. C. Botten, C. Martijn de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33(22), 2644–2646 (2008).
    [CrossRef] [PubMed]
  50. M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
    [CrossRef]
  51. P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  52. C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
    [CrossRef] [PubMed]
  53. R. W. Boyd, Nonlinear Optics, 3rd Edition, (Academic Press, 2008).

2010 (4)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

2009 (11)

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
[CrossRef] [PubMed]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
[CrossRef] [PubMed]

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

2008 (10)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

T. P. White, L. C. Botten, C. Martijn de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33(22), 2644–2646 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32(20), 2981–2983 (2007).
[CrossRef] [PubMed]

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

T. F. Krauss, ““Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

2006 (6)

2005 (5)

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

2004 (3)

S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
[CrossRef]

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

2002 (5)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

M. Soljačić, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19(9), 2052–2059 (2002).
[CrossRef]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation,” J. Lightwave Technol. 20(12), 2136–2144 (2002).
[CrossRef]

2000 (1)

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Ahuja, A.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Anderson, T. B.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Asakawa, K.

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

Baba, T.

Bach, R.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Baron, A.

Baxter, G. W.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Blows, J. L.

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
[CrossRef]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

Blumenthal, D. J.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Bolger, J. A.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

Borel, P. I.

Botten, L. C.

Buhl, L. L.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Carmon, T.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

Chandrasekhar, S.

Chen, X. G.

Choi, D. Y.

Choi, D.-Y.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Choi, H. Y.

J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Chung, Y. C.

J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
[CrossRef]

Clarke, A. M.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Clarke, K.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Clausen, A. T.

Colbourne, P.

Combrié, S.

Corcoran, B.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

de Rossi, A.

Delaye, P.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Dods, S.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Dossou, K. B.

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

Dreyer, K.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Dubreuil, N.

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Dulkeith, E.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
[CrossRef]

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Einstein, D.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Essiambre, R. J.

P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

Fage-Pedersen, J.

Fan, S. H.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Ferrera, M. L.

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Fishteyn, M.

S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
[CrossRef]

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

Frandsen, L. H.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Frey, R.

Frisken, S. J.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Fu, L. B.

Gaeta, A. L.

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Galili, M.

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Gomez-Iglesias, A.

Grillet, C.

Hamachi, Y.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Her, T. H.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

Hewitt, D.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Hulse, C. A.

Hunsche, S.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

Ibanescu, M.

Ikeda, N.

Inoue, K.

Ippen, E.

Jeppesen, P.

Joannopoulos, J. D.

Johnson, S. G.

Kilper, D. C.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Kiran, S.

Knights, A. P.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Kowalczyk, A.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Krauss, T. F.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

T. F. Krauss, ““Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Kubo, S.

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Lamont, M.

Lamont, M. R. E.

Landolsi, T.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Lavrinenko, A. V.

Lee, J. H.

J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Li, J.

Li, J. C.

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

Liscidini, M.

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Littler, I.

Luan, F.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Lunardi, L. M.

Luther-Davies, B.

Madden, S.

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Mägi, E. C.

Martijn de Sterke, C.

Mathlouthi, W.

McKerracher, R. W.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

McLaughlin, S.

McMillan, J. F.

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

McPhedran, R. C.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Mikkelsen, B.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Mok, J. T.

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

Monat, C.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Moravvej-Farshi, M. K.

Mori, D.

Moss, D. J.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

L. M. Lunardi, D. J. Moss, S. Chandrasekhar, L. L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C. A. Hulse, “Tunable dispersion compensation at 40-Gb/s using a multicavity etalon all-pass filter with NRZ, RZ, and CS-RZ modulation,” J. Lightwave Technol. 20(12), 2136–2144 (2002).
[CrossRef]

Mulvad, H. C.

Ng, T. T.

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
[CrossRef]

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

Nielsen, T. N.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

O¿Faolain, L.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

Oda, H.

Osgood, R. M.

Ostar, L.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Oxenløwe, L. K.

Pan, Z.

Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Paniccia, M.

Panoiu, N. C.

Pelusi, M.

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Pelusi, M. D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

Preiss, A.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Pudo, D.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

Randall, G.

Raybon, G.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Rochette, M.

Rode, A.

Roelens, M. A. F.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

D. I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. B. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

Rogers, J. A.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Rong, H.

Roosen, G.

Ryasnyanskiy, A.

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

Shin, S. K.

J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Sipe, J.

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Soljacic, M.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Stulz, S.

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

Ta’eed, V. G.

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Vlasov, Y. A.

E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

Vy Tran, Q.

Westbrook, P. S.

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

White, T. P.

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

T. P. White, L. C. Botten, C. Martijn de Sterke, K. B. Dossou, and R. C. McPhedran, “Efficient slow-light coupling in a photonic crystal waveguide without transition region,” Opt. Lett. 33(22), 2644–2646 (2008).
[CrossRef] [PubMed]

Wielandy, S.

S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
[CrossRef]

Williams, D.

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

Willner, A.

Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Willner, A. E.

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

Wong, C. W.

Xu, J.

Yang, X. D.

Yang, Z.

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Yeom, D. I.

Yu, Z.

Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Zhu, B. Y.

S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5um wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Electron. Lett. (1)

T. T. Ng, J. L. Blows, and B. J. Eggleton, “In-band OSNR monitoring using fibre optical parametric amplifier,” Electron. Lett. 41(6), 352–353 (2005).
[CrossRef]

IEEE J. Lightwave Technol. (6)

P. J. Winzer and R. J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

S. Wielandy, M. Fishteyn, and B. Y. Zhu, “Optical performance monitoring using nonlinear detection,” IEEE J. Lightwave Technol. 22(3), 784–793 (2004).
[CrossRef]

D. C. Kilper, R. Bach, D. J. Blumenthal, D. Einstein, T. Landolsi, L. Ostar, A. Preiss, and A. E. Willner, “Optical performance monitoring,” IEEE J. Lightwave Technol. 22(1), 294–304 (2004).
[CrossRef]

J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” IEEE J. Lightwave Technol. 24(11), 4162–4171 (2006).
[CrossRef]

T. B. Anderson, A. Kowalczyk, K. Clarke, S. Dods, D. Hewitt, and J. C. Li, “Multi impairment monitoring for optical networks,” IEEE J. Lightwave Technol. 27(16), 3729–3736 (2009).
[CrossRef]

T. T. Ng, J. L. Blows, J. T. Mok, R. W. McKerracher, and B. J. Eggleton, “Cascaded four-wave mixing in fiber optical parametric amplifiers: Application to residual dispersion monitoring,” IEEE J. Lightwave Technol. 23(2), 818–826 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O¿Faolain, and T. F. Krauss, “Slow Light Enhanced Nonlinear Optics in Silicon Photonic Crystal Waveguides,” IEEE J. Sel. Top. Quantum Electron. 16(1), 344–356 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. S. Westbrook, B. J. Eggleton, G. Raybon, S. Hunsche, and T. H. Her, “Measurement of residual chromatic dispersion of a 40-Gb/s RZ signal via spectral broadening,” IEEE Photon. Technol. Lett. 14(3), 346–348 (2002).
[CrossRef]

B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable dispersion compensation in a 160-Gb/s TDM system by a voltage controlled chirped fiber Bragg grating,” IEEE Photon. Technol. Lett. 12(8), 1022–1024 (2000).
[CrossRef]

M. A. F. Roelens, J. A. Bolger, D. Williams, S. J. Frisken, G. W. Baxter, A. M. Clarke, and B. J. Eggleton, “Flexible and Reconfigurable Time-Domain Demultiplexing of Optical Signals at 160 Gb/s,” IEEE Photon. Technol. Lett. 21(10), 618–620 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, ““Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys. 40(9), 2666–2670 (2007).
[CrossRef]

Nat. Photonics (8)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[CrossRef]

M. L. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organid hybrid slot waveguides,” Nat. Photonics 3(4), 216–219 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2(1), 35–38 (2008).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Nat. Phys. (1)

T. Carmon and K. J. Vahala, “Visible continuous emission from a silica microphotonic device by third-harmonic generation,” Nat. Phys. 3(6), 430–435 (2007).
[CrossRef]

Nature (3)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express (13)

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

M. Ebnali-Heidari, C. Monat, C. Grillet, and M. K. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express 17(20), 18340–18353 (2009).
[CrossRef] [PubMed]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express 17(9), 7206–7216 (2009).
[CrossRef] [PubMed]

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17(2), 552–557 (2009).
[CrossRef] [PubMed]

E. Dulkeith, Y. A. Vlasov, X. G. Chen, N. C. Panoiu, and R. M. Osgood., “Self-phase-modulation in submicron silicon-on-insulator photonic wires,” Opt. Express 14(12), 5524–5534 (2006).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. Mulvad, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17(4), 2182–2187 (2009).
[CrossRef] [PubMed]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

T. T. Ng, J. L. Blows, M. Rochette, J. A. Bolger, I. Littler, and B. J. Eggleton, “In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier,” Opt. Express 13(14), 5542–5552 (2005).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17(4), 2944–2953 (2009).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16(21), 16735–16745 (2008).
[CrossRef] [PubMed]

C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express 18(7), 6831–6840 (2010).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

Z. Pan, Z. Yu, and A. Willner, “Optical performance monitoring for next generation optical communication networks,” Opt. Fiber Technol. 16(1), 20–45 (2010).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

Other (5)

Nature Photonics Workshop on the Future of Optical Communications; Tokyo, Oct. 2007. www.nature.com/nphoton/supplements/techconference2007

B. J. Eggleton, D. J. Moss, and S. Radic, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools Ch. 20 (Academic Press, Oxford, 2008).

B. Metcalfe, Toward Terabit Ethernet, Plenary Talk, Optical Fiber Communications 2008, see www.ofcnfoec.org/conference_program/Plenary-video.aspx and www.lightreading.com/tv/tv_popup.asp?doc_id=146223 .

L. O’Faolain, J. Li, T. P. White, A.Gomez-Iglesias, and T.F.Krauss, “Low Loss Dispersion Engineered Photonic Crystal Waveguides for Optical Delay Lines,” Group IV Photonics proceedings, pg 40 (2009).

R. W. Boyd, Nonlinear Optics, 3rd Edition, (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of slow light enhanced nonlinearities in 2D dispersion engineered photonic crystal waveguides.

Fig. 2
Fig. 2

Principle of operation of OPM based on THG. Two signals with the same average power but a different eye diagram quality are converted by the device nonlinear power transfer curve into a bright or faint green light for the undistorted and noisy signal, respectively.

Fig. 3
Fig. 3

Group index versus wavelength for the silicon engineered PhC waveguide used in this work, having a group index ng~38, nearly constant ( ± 10%) over a wide (~12nm) spectral region. Also shown is the optical spectrum of the 640Gb/s PRBS data stream used in the experiments, showing that the slow light bandwidth is wide enough to accommodate the data bandwidth. Inset: eye diagram of 640Gb/s 33% RZ PRBS modulated signal, as measured with an all-optical sampling oscilloscope.

Fig. 4
Fig. 4

Experimental setup used to measure both THG as well as perform OPM using THG of a 640GBit/s data signal. For the 40 and 160GBit/s signals, the 8nm filters are replaced with 5nm filters, and launch power varied into the compression set up. Inset: Optically sampled eye diagram of 640GBit/s data signal.

Fig. 5
Fig. 5

Average THG power versus near-infrared coupled peak power for “clean” (non-degraded) signals at bit rates of 40Gbit/s, 160Gbit/s and 640Gbit/s along with cubic fits to the data. Left: a). The signal for all measurements was tuned to within the slow light region, except black square data which were taken at 640Gbit/s tuned to outside of the SL regime (1542nm). Right b). The normalized curves shown here for 40 and 160Gbit/s were obtained by scaling the raw data by the ratio of signal duty cycle to 640Gbit/s duty cycle (i.e. 4%/33% scaling for 40Gbit/s, 14%/33% scaling for 160Gbit/s).

Fig. 6
Fig. 6

Residual dispersion monitoring: Relative (normalised to the highest monitor reading) THG average power versus residual dispersion setting for fixed coupled power at 40Gb/s (top) 160Gb/s (middle) and 640Gb/s (bottom), respectively.

Fig. 7
Fig. 7

OSNR monitoring: Relative (normalised to the high OSNR value) THG average power versus input OSNR for fixed coupled power (from top to bottom) at 40Gb/s (top), 160Gb/s (middle) and 640Gb/s (bottom), respectively. Solid lines indicate theoretical curves associated with the three duty cycles used in the experiments. The bottom graph also contains experimental and theoretical results for 40Gbs at 33% duty cycle.

Tables (1)

Tables Icon

Table 1 Optical Pulse Parameters. (Powers correspond to the average power coupled into the waveguide)

Metrics