Abstract

A dynamically reconfigurable nested photonic crystal cavity suitable for frequency conversion applications is proposed. Dynamic switching between two distinct cavities allows intermodal transition via spatially-uniform tuning of the refractive index. Exclusion of the initial resonant mode from the Eigen modes of the tuned cavity precludes the adiabatic wavelength conversion process. Multiple intermodal transitions are suppressed by the symmetry of the mode profiles of the two cavities. Over 90nm wavelength shift (from L-band to the S-band) is shown numerically.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  2. R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
    [CrossRef] [PubMed]
  3. M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
    [CrossRef] [PubMed]
  4. A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
    [CrossRef] [PubMed]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  6. E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
    [CrossRef] [PubMed]
  7. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
    [CrossRef]
  8. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
    [CrossRef] [PubMed]
  9. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
    [CrossRef]
  10. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  11. A. Khorshidahmad, and A. G. Kirk, “Nested photonic crystal cavity for on-chip wavelength conversion,” in Proceedings of IEEE/LEOS Winter Topicals Meeting Series 2009 (IEEE,2009), 60–61.
  12. J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
    [CrossRef]
  13. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  14. P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
    [CrossRef] [PubMed]
  15. A. Khorshidahmad and A. G. Kirk, “Wavelength conversion by interband transition in a double heterostructure photonic crystal cavity,” Opt. Lett. 34(19), 3035–3037 (2009).
    [CrossRef] [PubMed]
  16. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  17. A. Mock, L. Lu, and J. D. O’Brien, “Spectral properties of photonic crystal double heterostructure resonant cavities,” Opt. Express 16(13), 9391–9397 (2008).
    [CrossRef] [PubMed]
  18. Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
    [CrossRef]
  19. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, “Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide,” Opt. Express 16(7), 4605–4614 (2008).
    [CrossRef] [PubMed]
  20. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163–1165 (2002).
    [CrossRef]
  21. Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006).
    [CrossRef]
  22. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
    [CrossRef] [PubMed]
  23. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [CrossRef] [PubMed]
  24. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic wavelength conversion of an optical pulse traveling in a 2D photonic crystal waveguide,” in Proceedings of the 20th Annual Meeting of the IEEE/LEOS (IEEE, 2007), pp. 349–350.

2009 (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

A. Khorshidahmad and A. G. Kirk, “Wavelength conversion by interband transition in a double heterostructure photonic crystal cavity,” Opt. Lett. 34(19), 3035–3037 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (4)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

2006 (2)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006).
[CrossRef]

2005 (3)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

R. Espinola, J. Dadap, R. Osgood, S. McNab, and Y. Vlasov, “C-band wavelength conversion in silicon photonic wire waveguides,” Opt. Express 13(11), 4341–4349 (2005).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

2004 (1)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

2003 (1)

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163–1165 (2002).
[CrossRef]

1999 (1)

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Asano, T.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Dadap, J.

Dong, P.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

Espinola, R.

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

Forchel, A.

Foster, M. A.

Gaeta, A. L.

Hagino, H.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Ippen, E. P.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

Joannopoulos, J. D.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

Kamp, M.

Khorshidahmad, A.

Kirk, A. G.

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Kwon, S.-H.

Lipson, M.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

A. C. Turner, M. A. Foster, A. L. Gaeta, and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express 16(7), 4881–4887 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, R. Salem, M. Lipson, and A. L. Gaeta, “Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides,” Opt. Express 15(20), 12949–12958 (2007).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Lu, L.

Manipatruni, S.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

McNab, S.

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Mock, A.

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Noda, S.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Notomi, M.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

O’Brien, J. D.

Osgood, R.

Preble, S. F.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Qiang, Z.

Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163–1165 (2002).
[CrossRef]

Reed, E. J.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Robinson, J. T.

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

Salem, R.

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Soljacic, M.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

Song, B.-S.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Sünner, T.

Takahashi, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Tanaka, Y.

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15(25), 17206–17213 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Turner, A. C.

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

Vlasov, Y.

Winn, J. N.

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Zhou, W.

Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

Y. Takahashi, Y. Tanaka, H. Hagino, T. Asano, and S. Noda, “Higher-order resonant modes in a photonic heterostructure nanocavity,” Appl. Phys. Lett. 92(24), 241910 (2008).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81(7), 1163–1165 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Qiang and W. Zhou, “Fast calculation of cavity-mode characteristics of photonic crystal cavities,” IEEE Photon. Technol. Lett. 18(18), 1940–1942 (2006).
[CrossRef]

Nat. Mater. (2)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[CrossRef] [PubMed]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1(5), 293–296 (2007).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73(5), 051803 (2006).
[CrossRef]

Phys. Rev. B (1)

J. N. Winn, S. Fan, J. D. Joannopoulos, and E. P. Ippen, “Interband transitions in photonic crystals,” Phys. Rev. B 59(3), 1551–1554 (1999).
[CrossRef]

Phys. Rev. Lett. (3)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92(8), 083901 (2004).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett. 90(20), 203904 (2003).
[CrossRef] [PubMed]

P. Dong, S. F. Preble, J. T. Robinson, S. Manipatruni, and M. Lipson, “Inducing photonic transitions between discrete modes in a silicon optical microcavity,” Phys. Rev. Lett. 100(3), 033904 (2008).
[CrossRef] [PubMed]

Other (2)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic wavelength conversion of an optical pulse traveling in a 2D photonic crystal waveguide,” in Proceedings of the 20th Annual Meeting of the IEEE/LEOS (IEEE, 2007), pp. 349–350.

A. Khorshidahmad, and A. G. Kirk, “Nested photonic crystal cavity for on-chip wavelength conversion,” in Proceedings of IEEE/LEOS Winter Topicals Meeting Series 2009 (IEEE,2009), 60–61.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dispersion bands of TE-like modes of the single line-defect waveguide (red) standard and (blue) blue-shifted bands for the waveguide with enlarged holes close to the defect. Positive (negative) defect heterostructure cavity with red (blue)-shifted bands at the center supports mode-gap-confined resonances close to the up (down)-concave stationary points of the dispersion relation.

Fig. 2
Fig. 2

Schematic of the nested cavity and band structure; open circles represent the bulk PhC radius. Red, blue and violet colored sections have increasingly higher band edge frequency. The slab index in the solid box is dynamically tuned. Stored energy is calculated within the dotted box. The band-edge and the down-bending stationary point frequency of the first even mode (see Fig. 1) along the line-defect before (after) the tuning are schematically shown along the upper (lower) half of the cavity.

Fig. 3
Fig. 3

(a)-(e) Magnetic-field profile in the symmetry plane of the slab membrane at the stationary point of the dispersion bands indicated as P1, P2, P3, N1 and N2 in Fig. 1 respectively. (f) Schematic of the waveguide structure.

Fig. 4
Fig. 4

Magnetic field profile of the resonant modes of the nested cavity shown in Fig. 1; (a) the initial P2 mode and (b) the N2 mode after the index tuning.

Fig. 5
Fig. 5

Spectra of the field inside the nested cavity (solid) with (dashed) without tuning obtained by 2D FDTD. Tuning is performed in 100fs by 0.7% lowering of refractive index in the solid box of Fig. 2.

Fig. 6
Fig. 6

Temporal variation of the field energy inside the cavity (solid) with and (dotted) without index modulation. Cavity is numerically excited with P2 mode at t = 0, energy density integrated within the dotted box in Fig. 2. Insets show the magnified views of the energy plot before and after the tuning. Time is multiplied by the light speed in vacuum.

Metrics