Abstract

Single-phase, polycrystalline ErxY2-xSiO5 thin films were deposited by reactive ion-beam sputter deposition and rapid thermal annealing. Due to the crystalline nature, the silicate thin films provide peak Er3+ emission cross-section of 0.9 ± 0.02 × 10−20 cm2 that is higher than that in silica. Optical gain, with near 60% inversion, is achieved via optical pumping of a single-mode, ridge-type waveguide with the silicate core with an Er concentration of 1.7 × 1020 cm−3. Analysis of pump-power dependence of the optical gain and spontaneous emission intensity of Er3+ indicate that the gain is limited by cooperative upconversion process, whose coefficient is determined to be (8 ± 3) × 10−17 cm3/sec.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, S. Photonics, Topics in Applied Physics (Springer, Berlin, 2004) Vol. 94.
  2. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  4. W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  5. A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
    [CrossRef]
  6. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
    [CrossRef]
  7. K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
    [CrossRef]
  8. M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
    [CrossRef]
  9. X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
    [CrossRef]
  10. K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
    [CrossRef]
  11. M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er(3+)-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 772–774 (1997).
    [CrossRef] [PubMed]
  12. JCPDS powder diffraction file: #52–1809 (Er2SiO5), #52–1810 (Y2SiO5).
  13. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A-954–A957 (1964).
    [CrossRef]
  14. E. Hecht, Optics 4th ed. (Addison Wesley, 2002).
    [PubMed]
  15. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008 (2003).
    [CrossRef]
  16. G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
    [CrossRef]
  17. Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
    [CrossRef]
  18. R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
    [CrossRef]

2009

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

2008

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

2007

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

2006

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

2003

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008 (2003).
[CrossRef]

2000

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

1997

M. P. Hehlen, N. J. Cockroft, T. R. Gosnell, A. J. Bruce, G. Nykolak, and J. Shmulovich, “Uniform upconversion in high-concentration Er(3+)-doped soda lime silicate and aluminosilicate glasses,” Opt. Lett. 22(11), 772–774 (1997).
[CrossRef] [PubMed]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

1996

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

1991

W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A-954–A957 (1964).
[CrossRef]

Bae, B.-S

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Bae, B.-S.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

Bongiorno, C.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Bowers, J. E.

Bruce, A. J.

Cockroft, N. J.

Cohen, O.

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

de Waal, H.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Eaglesham, D. J.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

Faber, A. J.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Fang, A. W.

Franzó, G.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Gosnell, T. R.

Grimaldi, M. G.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

Hehlen, M. P.

Iacona, F.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Irrera, A.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Isshiki, H.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

Jacobson, D. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

Jones, R.

Kik, P. G.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008 (2003).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Kimura, T.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

Kistler, R. C.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

Lo Savio, R.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A-954–A957 (1964).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Miritello, M.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Nakajima, T.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

Nykolak, G.

Paniccia, M. J.

Park, H.

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Piro, A. M.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Poate, J. M.

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

Polman, A.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008 (2003).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

Priolo, F.

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Seo, S.-J.

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

Shin, H. J.

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Shin, J. H.

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

Shmulovich, J.

Smit, M. K.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

Snoeks, E.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

Suh, K.

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

van Dam, C.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

van den Hoven, G. N.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

van Uffelen, J. W.

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

Wang, X. J.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

Yan, Y. C.

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

Adv. Mater.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzó, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient luminescence and energy transfer in erbium silicate thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[CrossRef]

Appl. Phys. Lett.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2 /Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[CrossRef]

K. Suh, H. J. Shin, S.-J. Seo, and B.-S Bae, “Er3+ luminescence and cooperative upconversion in ErxY2−xSiO5 nanocrystal aggregates fabricated using Si nanowires,” Appl. Phys. Lett. 92, 121910 (2008).
[CrossRef]

Y. C. Yan, A. J. Faber, H. de Waal, P. G. Kik, and A. Polman, “Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm,” Appl. Phys. Lett. 71(20), 2922 (1997).
[CrossRef]

K. Suh, J. H. Shin, S.-J. Seo, and B.-S. Bae, “Large-scale fabrication of single-phase Er2SiO5 nanocrystal aggregates using Si nanowires,” Appl. Phys. Lett. 89(22), 223102 (2006).
[CrossRef]

J. Appl. Phys.

P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008 (2003).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, C. van Dam, J. W. van Uffelen, and M. K. Smit, “Upconversion in Er-implanted Al2O3 waveguides,” J. Appl. Phys. 79(3), 1258 (1996).
[CrossRef]

A. Polman, D. C. Jacobson, D. J. Eaglesham, R. C. Kistler, and J. M. Poate, “Optical doping of waveguide materials by MeV Er implantation,” J. Appl. Phys. 70(7), 3778 (1991).
[CrossRef]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1 (1997).
[CrossRef]

J. Lightwave Technol.

W. J. Miniscalco, “Er-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

J. Phys. Condens. Matter

R. Lo Savio, M. Miritello, F. Iacona, A. M. Piro, M. G. Grimaldi, and F. Priolo, “Thermal evolution of Er silicate thin films grown by rf magnetron sputtering,” J. Phys. Condens. Matter 20(45), 454218 (2008).
[CrossRef]

Nature

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A-954–A957 (1964).
[CrossRef]

Other

E. Hecht, Optics 4th ed. (Addison Wesley, 2002).
[PubMed]

JCPDS powder diffraction file: #52–1809 (Er2SiO5), #52–1810 (Y2SiO5).

See, for example, S. Photonics, Topics in Applied Physics (Springer, Berlin, 2004) Vol. 94.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A schematic description of the transmission / optical gain measurement setup used in the investigation

Fig. 2
Fig. 2

(a) The X-ray diffraction (XRD) spectra of the as-deposited and annealed films. Also shown are the expected XRD peak positions of Y2SiO5 with a monoclinic symmetry of space group P21/c according to the JCPDS cards. (b) The room temperature Er3+ PL spectrum. Also shown is the absorption spectrum, calculated using the McCumber relationship. (c) Refractive index of the film, as measured by ellipsometry. Also shown is the fit using the single-pole Sellmeier equation. The refractive index at 1.54 μm is estimated to be 1.67. (d) The SEM image of “low-Er” waveguide prior to polishing. The scale bar represents 1 μm. The inset shows the calculated TE-mode-profile of the waveguide.

Fig. 3
Fig. 3

(a) Base-line corrected transmission spectrum of “high-Er” waveguide. Also shown is the Er absorption spectrum calculated from Er3+ photoluminescence spectrum using the McCumber relationship. (b) Waveguide-length dependent transmission loss, obtained by cut-back method at 1536 nm. Each data point represents an average of at least 9 identically prepared waveguides

Fig. 4
Fig. 4

(a) The gain characteristics of (a) “low-Er” and (b) “high-Er” waveguide at 1529 nm. Also shown as the inset are the transmission spectra of the waveguides at zero and maximum pump powers. Population inversion is achieved for “low-Er” waveguide, but not for the “high-Er” waveguide.

Fig. 5
Fig. 5

Comparison of Er3+ photoluminescence (PL) intensities, obtained from the waveguides during actual pumping, at 981nm due to 4I11/24I15/2 (i.e, second-excited to ground state) transition with that at 1529 nm that corresponds to 4I13/24I15/2 (i.e, first-excited to ground state) transition. Figure 5(a) Shows the results from “high-Er” waveguide. The inset shows an optical microscope image of the waveguide under strong pumping. The green light is due to higher-order cooperative upconversion into the 2H11/2 state. Note that the green light, which indicate propagation of the 1480 nm pump beam, is straight, confirming single-mode operation of fabricated waveguides in 1500 nm wavelength range. Figure 5(b) shows the results from the “low-Er” film. The inset shows the results of fitting Eq. (1) to 1531 nm PL intensity, indicating a CUC of (8 ± 3) × 10−17 cm3/sec

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I E r σ a b s ϕ + σ e m ϕ + 1 / τ 2 C N { [ 1 + 4 C N σ a b s ϕ ( σ a b s ϕ + σ e m ϕ + 1 / τ ) 2 ] 1 / 2 1 }

Metrics