Abstract

Near infrared transmission of light through subwavelength slit arrays is shown to be significantly influenced by resonant metallic nanoparticles placed within the structure. Experimental and calculated transmission spectra show how the size, orientation of the nanoparticles, and the period of the nanoslit array influence the maximum transmission wavelength, the magnitude of the transmission, and width of the resonance. These findings suggest that the localized surface plasmon resonance (LSPR) of metallic nanoparticles and their subsequent near and far-field interactions can modulate the subwavelength transmission and bandwidth of nanoaperture array devices in optically thick metal films.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef]
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  3. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [CrossRef] [PubMed]
  4. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  7. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  8. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
    [CrossRef]
  9. G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).
  10. C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
    [CrossRef]
  11. S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).
  12. S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
    [CrossRef] [PubMed]
  13. S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
    [CrossRef] [PubMed]
  14. M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
    [CrossRef]
  15. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef] [PubMed]
  16. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
    [CrossRef]
  17. C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
    [CrossRef]
  18. A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
    [CrossRef] [PubMed]
  19. W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
    [CrossRef] [PubMed]
  20. J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
    [CrossRef] [PubMed]
  21. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
    [CrossRef] [PubMed]
  22. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
    [CrossRef]
  23. Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc Natl Acad Sci U S A (2009).
  24. M. E. Stewart, J. Yao, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Multispectral Thin Film Biosensing and Quantitative Imaging Using 3D Plasmonic Crystals,” Anal Chem (2009).
  25. S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
    [CrossRef]
  26. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
    [CrossRef] [PubMed]
  27. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
    [CrossRef] [PubMed]
  28. Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
    [CrossRef] [PubMed]
  29. Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, “Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit,” Opt. Express 16(23), 18881–18882 (2008).
    [CrossRef]
  30. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
    [CrossRef] [PubMed]
  31. J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008).
    [CrossRef]
  32. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
    [CrossRef] [PubMed]
  33. B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010).
    [CrossRef]
  34. Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).
  35. K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
    [CrossRef] [PubMed]
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  37. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
    [CrossRef]
  38. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [CrossRef]
  39. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [CrossRef] [PubMed]
  40. M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
    [CrossRef]
  41. A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008).
    [CrossRef]
  42. L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
    [CrossRef]
  43. S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
    [CrossRef]
  44. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
    [CrossRef]
  45. B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008).
    [CrossRef] [PubMed]
  46. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
    [CrossRef]
  47. A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
    [CrossRef]
  48. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2(6), 931–949 (1985).
    [CrossRef]
  49. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  50. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [CrossRef]

2010 (1)

B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010).
[CrossRef]

2009 (5)

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

2008 (10)

A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008).
[CrossRef]

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, “Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit,” Opt. Express 16(23), 18881–18882 (2008).
[CrossRef]

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

2007 (6)

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

2006 (2)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

2005 (6)

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
[CrossRef] [PubMed]

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

2004 (3)

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

2003 (7)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).

2001 (2)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

1998 (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Anker, J. N.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Auguie, B.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008).
[CrossRef] [PubMed]

Aussenegg, F. R.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Barnes, W. L.

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bouhelier, A.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Brolo, A. G.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Chang, L.

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Collin, S.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

El-Sayed, M. A.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Fakhraai, Z.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Ferreira, J.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Girotto, E. M.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Gordon, R.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Haes, A. J.

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Hägglund, C.

C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Hall, W. P.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

Hao, L. L.

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Hicks, E. M.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Hohenau, A.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Huang, W. Y.

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
[CrossRef] [PubMed]

Im, J. S.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Ip, S.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

Janel, N.

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, Y. S.

Kall, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Kasemo, B.

C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Kaur, P.

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kim, H. K.

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, “Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit,” Opt. Express 16(23), 18881–18882 (2008).
[CrossRef]

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008).
[CrossRef]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Klein, W. L.

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Kofke, M. J.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Krenn, J. R.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lalanne, P.

B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010).
[CrossRef]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lazarides, A. A.

G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lee, C. W.

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Lee, K. G.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef] [PubMed]

Lee, K. L.

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Leitner, A.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Li, J.-

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Liao, P. F.

Lin, Y.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

Liu, S.-

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Mahmoud, M.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Meier, M.

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Modica, J.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

Mrksich, M.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

Murali, R.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

Pardo, F.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

Park, Q. H.

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef] [PubMed]

Pelouard, J. L.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

Pinchuk, A.

A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Rahman, M. M.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Rodier, J. C.

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
[CrossRef] [PubMed]

Royer, P.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Salerno, M.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

Santos, M. J.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Schatz, G.

A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008).
[CrossRef]

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).

Schider, G.

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Sinton, D.

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

Spears, K. G.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Sun, Z.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Sung, J.

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

Tabor, C.

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Teissier, R.

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Van Duyne, R. P.

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Waldeck, D.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Waldeck, D. H.

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Walker, G. C.

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

Wang, B.

B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010).
[CrossRef]

Wang, L.

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Wang, Q.-

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Wang, W. S.

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Wei, P. K.

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Wokaun, A.

Wu, S.

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Wuenschell, J.

Y. S. Jung, J. Wuenschell, H. K. Kim, P. Kaur, and D. H. Waldeck, “Blue-shift of surface plasmon resonance in a metal nanoslit array structure,” Opt. Express 17(18), 16081–16091 (2009).
[CrossRef] [PubMed]

Y. S. Jung, Y. Xi, J. Wuenschell, and H. K. Kim, “Near- to far-field imaging of phase evolution of light emanating from a metal nanoslit,” Opt. Express 16(23), 18881–18882 (2008).
[CrossRef]

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008).
[CrossRef]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Xi, Y.

Yin, X.-

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Zach, M.

C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

Zhao, L.

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

Zhu, D.

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Zhu, Y.-y.

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Zou, S. L.

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

Abstr Pap Am Chem S (2)

S. L. Zou, L. L. Hao, N. Janel, and G. C. Schatz, “Extinction spectra of nanoparticle arrays: The influence of size, shape, and interparticle spacing,” Abstr Pap Am Chem S 227, U266–U266 (2004).

G. C. Schatz, A. A. Lazarides, and K. L. Kelly, “Modeling the extinction spectra of metal nanoparticle chains and arrays,” Abstr Pap Am Chem S 224, U298–U298 (2002).

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Appl. Phys. B (2)

A. Pinchuk and G. Schatz, “Collective surface plasmon resonance coupling in silver nanoshell arrays,” Appl. Phys. B 93(1), 31–38 (2008).
[CrossRef]

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B 84(1-2), 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

S. Wu, Q.- Wang, X.- Yin, J.- Li, D. Zhu, S.- Liu, and Y.-y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113–101113 (2008).
[CrossRef]

M. J. Kofke, D. H. Waldeck, Z. Fakhraai, S. Ip, and G. C. Walker, “The effect of periodicity on the extraordinary optical transmission of annular aperture arrays,” Appl. Phys. Lett. 94(2), 023104 (2009).
[CrossRef]

C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92(1), 013113 (2008).
[CrossRef]

B. Wang and P. Lalanne, “How many surface plasmons are locally excited on the ridges of metallic lamellar gratings?” Appl. Phys. Lett. 96(5), 051115–051113 (2010).
[CrossRef]

Y. S. Jung, Z. Sun, J. Wuenschell, H. K. Kim, P. Kaur, L. Wang, and D. Waldeck, “High-sensitivity surface plasmon resonance spectroscopy based on a metal nanoslit array,” Appl. Phys. Lett. 88, (2006).

Chem. Rev. (1)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[CrossRef] [PubMed]

IEEE T Nanotechnol (1)

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE T Nanotechnol 7(2), 229–236 (2008).
[CrossRef]

J. Am. Chem. Soc. (3)

A. J. Haes, L. Chang, W. L. Klein, and R. P. Van Duyne, “Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor,” J. Am. Chem. Soc. 127(7), 2264–2271 (2005).
[CrossRef] [PubMed]

W. P. Hall, J. N. Anker, Y. Lin, J. Modica, M. Mrksich, and R. P. Van Duyne, “A calcium-modulated plasmonic switch,” J. Am. Chem. Soc. 130(18), 5836–5837 (2008).
[CrossRef] [PubMed]

J. Ferreira, M. J. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton, and E. M. Girotto, “Attomolar protein detection using in-hole surface plasmon resonance,” J. Am. Chem. Soc. 131(2), 436–437 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

K. L. Lee, C. W. Lee, W. S. Wang, and P. K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt. 12, - (2007).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

S. L. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120(23), 10871–10875 (2004).
[CrossRef] [PubMed]

S. L. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121(24), 12606–12612 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

C. Tabor, R. Murali, M. Mahmoud, and M. A. El-Sayed, “On the Use of Plasmonic Nanoparticle Pairs As a Plasmon Ruler: The Dependence of the Near-Field Dipole Plasmon Coupling on Nanoparticle Size and Shape,” J. Phys. Chem. A 113(10), 1946–1953 (2009).
[CrossRef]

J. Phys. Chem. B (5)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays†,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[CrossRef]

L. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. B 107(30), 7343–7350 (2003).
[CrossRef]

J. Phys. Chem. C (3)

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Plasmon coupling in finite-sized two-dimensional arrays of cylindrical silver nanoparticles,” J. Phys. Chem. C 112(11), 4091–4096 (2008).
[CrossRef]

J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle spectroscopy: Dipole coupling in two-dimensional arrays of L-shaped silver nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

Nano Lett. (4)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8(12), 4391–4397 (2008).
[CrossRef]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9(4), 1651–1658 (2009).
[CrossRef] [PubMed]

P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation,” Nano Lett. 7(7), 2080–2088 (2007).
[CrossRef]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef] [PubMed]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

M. Salerno, J. R. Krenn, A. Hohenau, H. Ditlbacher, G. Schider, A. Leitner, and F. R. Aussenegg, “The optical near-field of gold nanoparticle chains,” Opt. Commun. 248(4-6), 543–549 (2005).
[CrossRef]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (3)

S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63(3), 033107 (2001).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (6)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86(24), 5601–5603 (2001).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88(5), 057403 (2002).
[CrossRef] [PubMed]

P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, (2005).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, (2008).
[CrossRef] [PubMed]

K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005).
[CrossRef] [PubMed]

Other (2)

Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, and A. P. Alivisatos, “Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level,” Proc Natl Acad Sci U S A (2009).

M. E. Stewart, J. Yao, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Multispectral Thin Film Biosensing and Quantitative Imaging Using 3D Plasmonic Crystals,” Anal Chem (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Diagram of the system under study: a 150nm gold film on quartz with nanoparticle chains nested within a subwavelength nanoslit. Single nanoslits are defined by a width w and fixed spacing P that represents the period of the array. The nanoparticle chains within the slit are defined by a length along the y-axis L and width along the x-axis d. The separation between individual nanoparticles within the chain is defined as s. b) SEM image of a FIB milled nanoparticle/nanoslit array. For the nanoslit: w = 240nm and P = 517nm, and for the nanoparticles: L = 290nm, d = 160nm, s = 210nm.

Fig. 2
Fig. 2

a) Experimental and b) FDTD simulated near infrared transmission spectra of NPNS arrays for nanoparticle lengths 195nm to 410nm. The period of the arrays is fixed at 670nm with the spacing between nanoparticles fixed at 210nm. A comparison of λmax at the different nanoparticle lengths between a) and b) is shown in c).

Fig. 4
Fig. 4

a) experimental and b) theoretical transmission spectra as well as c) λmax vs. period of the NPNS arrays with L = 305nm, d = 160nm and s = 210nm. The period of the array is varied from 800nm to 1300nm. Panel a/b display the transmission spectra for P = 800nm to 1300nm, while the plot of λmax vs. period is shown for P = 800nm to 1300nm. The period in c) was incremented in 50nm intervals for both experimental and 25nm for the FDTD. The dashed line represents the light line λ = n substrate • P.

Fig. 3
Fig. 3

a) experimental and b) theoretical transmission spectra with the incident light polarized along the x-axis of the NPNS array for nanoparticle lengths of 195 to 410nm. The period is fixed at 965nm and the spacing between the nanoparticles is 210nm.

Fig. 5
Fig. 5

a) Experimental and b) FDTD calculated transmission spectra of NPNS arrays in which w = 240nm, P = 650nm, L = 305nm, d = 160nm. The spacing between nanoparticles is varied from 30nm to 360nm for both the experimental and the FDTD data. c) Nanoparticle spacing as a function of Δλ/λo for both experimental and theoretical data. The solid line represents the exponential fit of the form with R2 = 0.99. For the experimental data A = 0.37 ± 0.02, τ = 0.20 ± 0.02 and for the FDTD data A = 0.39 ± 0.02, τ = 0.19 ± 0.01.

Metrics