Abstract

Photonic integrated circuits (PICs) capable of ultra-fast, signal processing are recognized as being fundamental for future applications involving ultra-short optical pulse propagation, including the ability to meet the exponentially growing global fiber-optic telecommunications bandwidth demand. Integrated all-optical signal processors would carry substantial benefits in terms of performance, cost, footprint, and energy efficiency. Here, we demonstrate an optical pulse compressor based on an integrated nonlinear chirper, capable of operating on a sub-picosecond (> 1Tb/s) time scale. It is CMOS compatible and based on a 45cm long, high index doped silica glass waveguide we achieve pulse compression at relatively low input peak powers, due to the high nonlinearity and low linear and nonlinear losses of the device. The flexibility of this platform in terms of nonlinearity and dispersion allows the implementation of several compression schemes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Nature Photonics Workshop on the Future of Optical Communications, Japan, Oct. 2007, www.nature.com/nphoton/supplements/techconference2007
  2. B. J.Eggleton, S. Radic, and D. J. Moss, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools, (Academic, 2008).
  3. B. E. Bouma, and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  4. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139 (1984).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, (Academic, 1995).
  6. A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
    [CrossRef]
  7. J. Biegert and J.-C. Diels, “Compression of pulses of a few optical cycles through harmonic generation,” J. Opt. Soc. Am. B 18(8), 1218 (2001).
    [CrossRef]
  8. J. Moses and F. W. Wise, “Soliton compression in quadratic media: high-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31(12), 1881–1883 (2006).
    [CrossRef] [PubMed]
  9. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8(5), 289–291 (1983).
    [CrossRef] [PubMed]
  10. R. Hunsperger, Integrated optics: Technology and Theory, (Springer-Verlag, 1995).
  11. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
    [CrossRef] [PubMed]
  12. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
    [CrossRef]
  13. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  14. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  15. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377 (2006).
    [CrossRef] [PubMed]
  16. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  17. E. W. Van Stryland, Y. Y. Wu, D. J. Hagan, M. J. Soileau, and K. Mansour, “Optical limiting with semiconductors,” J. Opt. Soc. Am. B 5(9), 1980 (1988).
    [CrossRef]
  18. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  20. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
    [CrossRef]
  21. M. Ohtani and M. Hanabusa, “Silicon nitride ridge-type optical waveguides fabricated on oxidized silicon by laser direct writing,” Appl. Opt. 31(27), 5830 (1992).
    [CrossRef] [PubMed]
  22. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
    [CrossRef]
  23. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
    [CrossRef] [PubMed]
  24. B. E. Little, “A VLSI photonics platform,” Conference on Optical Fiber Communication 86, 444 (2003).
  25. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
    [CrossRef] [PubMed]
  26. C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley, 1999)
  27. A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
    [CrossRef]

2010

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

2009

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

2008

D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33(7), 660–662 (2008).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

2007

2006

2005

2004

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

2003

2001

1995

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

1992

1991

A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[CrossRef]

1988

1984

1983

Alic, N.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Almeida, V. R.

Bacon, D. D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Baets, R.

Barrios, C. A.

Beckx, S.

Bellutti, P.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Biegert, J.

Bienstman, P.

Bogaerts, W.

Brès, C.-S.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Casquel, R.

Chirovsky, L. M. F.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Christodoulides, D. N.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Chu, S. T.

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

D’Asaro, L. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Dahringer, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

De Angelis, C.

Diels, J.-C.

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Dumon, P.

Eggleton, B. J.

El-Ganainy, R.

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Fu, L.

Goossen, K. W.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Gordon, J. P.

Griol, A.

Gylfason, K. B.

Hagan, D. J.

Hanabusa, M.

Holgado, M.

Hui, S. P.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Ibragimov, E.

A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[CrossRef]

Iwanow, R.

Kompocholis, C.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Kossives, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Kuo, B. P. P.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Lamont, M. R. E.

Leibenguth, R.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Lentine, A. L.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Lipson, M.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Locatelli, A.

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Luyssaert, B.

Mägi, E. C.

Mansour, K.

McNab, S. J.

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Miller, D. A. B.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Modotto, D.

Mollenauer, L. F.

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14(20), 9377 (2006).
[CrossRef] [PubMed]

Moses, J.

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Ohtani, M.

Panepucci, R. R.

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Pozzi, F.

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Radic, S.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides,” Opt. Express 17(3), 1865–1870 (2009).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Roelens, M. A. F.

Sánchez, B.

Sbrana, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Shank, C. V.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Siviloglou, G. A.

Sohlström, H.

Soileau, M. J.

Sorel, M.

Stabinis, A.

A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[CrossRef]

Stanley, C. R.

Stegeman, G. I.

Stolen, R. H.

Suntsov, S.

Taillaert, D.

Tomlinson, W. J.

Tseng, B.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Valiulis, G.

A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[CrossRef]

Van Campenhout, J.

Van Stryland, E. W.

Van Thourhout, D.

Vlasov, Y. A.

Walker, J. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

Wiaux, V.

Wiberg, A. O. J.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Wise, F. W.

Wu, Y. Y.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Yeom, D.-I.

Zhao, J. X.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. X. Zhao, N. Alic, and S. Radic, “Pedestal-free pulse source for high data rate optical time-division multiplexing based on fiber-optical parametric processes,” IEEE J. Quantum Electron. 45(11), 1325–1330 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7(4), 360–362 (1995).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Mater. Sci. Semicond. Process.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional SiN waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Nat. Photonics

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4(1), 41–45 (2010).
[CrossRef]

Opt. Commun.

A. Stabinis, G. Valiulis, and E. Ibragimov, “Effective sum frequency pulse compression in nonlinear crystals,” Opt. Commun. 86(3-4), 301–306 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. E. Little, “A VLSI photonics platform,” Conference on Optical Fiber Communication 86, 444 (2003).

C. K. Madsen, and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach, (Wiley, 1999)

R. Hunsperger, Integrated optics: Technology and Theory, (Springer-Verlag, 1995).

Nature Photonics Workshop on the Future of Optical Communications, Japan, Oct. 2007, www.nature.com/nphoton/supplements/techconference2007

B. J.Eggleton, S. Radic, and D. J. Moss, Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools, (Academic, 2008).

B. E. Bouma, and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM image of the waveguide prior to the SiO2 cladding deposition. (b) Calculated TE mode field distribution. (c) Sketch of the chip: a fiber pigtailed 45cm spiral waveguide and a reference waveguide of 1mm are connected to standard SMF-fibers.

Fig. 2
Fig. 2

Sketch of the experimental setup: the red and blue pulse shapes highlights the different pulse widths after the propagation through the reference and the spiral waveguide, respectively.

Fig. 3
Fig. 3

Pulse compression at different pulse energies: autocorrelation (a) and spectrum (b) obtained collecting the output of the spiral waveguide after 0.66m of SMF. The Gaussian best-fitted pulse waist is indicated between brackets

Fig. 4
Fig. 4

Reference pulse compression: autocorrelation (a) and spectrum (b) obtained collecting the output of the 1mm waveguide (reference) after 0.66m of SMF. Clearly, the pulse compression is negligible in this case.

Fig. 5
Fig. 5

Predicted output pulse temporal width vs. the source pulse energy with (red curve) and without (black curve) the inclusion of the spiral waveguide in the optical path. The dots represent the pulse time duration obtained by fitting the experimental data.

Fig. 6
Fig. 6

Pulse-width as a function of the propagation distance through the set-up, which includes 7.33m of input fiber, 0.45m of spiral waveguide and 0.66m of output pigtail. The plot is obtained for both a low energy input pulse of 15.0 pJ (a) and a high energy input pulse of 71.2 pJ (b).

Fig. 7
Fig. 7

GVD as a function of the waveguide width for different values of the height (H).

Fig. 8
Fig. 8

Evolution of an input fundamental soliton in a waveguide of height H = 1.7μm and width W linearly varying from W(Z = 0) = 1.75μm to W(Z = 450mm) = 1.40μm (a). Input pulse envelope (b). Pulse envelope at Z = 450mm (c). Pulse FWHM vs propagation length (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

i A z β 2 j 2 2 A T 2 + γ j | A | 2 A + i α j 2 A = 0

Metrics