Abstract

We present an optical tweezer sensor for shear stress mapping in microfluidic systems of different internal geometries. The sensor is able to measure the shear stress acting on microspheres of different sizes that model cell based biological operations. Without the need for a spatial modulator or a holographic disk, the sensor allows for direct shear stress detection at arbitrary positions in straight and curved microfluidic devices. Analytical calculations are carried out and compared with the experimental results. It is observed that a decrease in the microsphere size results in an increase in the shear stress the particle experiences.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Larson, The structure and rheology of complex fluids (Oxford U. Press, 1998).
  2. A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
    [CrossRef] [PubMed]
  3. M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
    [CrossRef]
  4. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
    [CrossRef] [PubMed]
  5. D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu Rev Biophys 38(1), 301–326 (2009).
    [CrossRef] [PubMed]
  6. H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
    [CrossRef] [PubMed]
  7. G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
    [CrossRef]
  8. R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
    [CrossRef]
  9. E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
    [CrossRef]
  10. H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
    [CrossRef] [PubMed]
  11. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
    [CrossRef] [PubMed]
  12. W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
    [CrossRef]
  13. Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
    [CrossRef]
  14. C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
    [CrossRef]
  15. P. Becher, Encyclopedia of emulsion technology (Marcel Dekker Inc., 1996).
  16. J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
    [CrossRef] [PubMed]

2009 (2)

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu Rev Biophys 38(1), 301–326 (2009).
[CrossRef] [PubMed]

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

2008 (1)

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

2007 (3)

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

2006 (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
[CrossRef]

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

2004 (1)

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

2002 (1)

H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
[CrossRef] [PubMed]

1998 (1)

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

1969 (1)

W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
[CrossRef]

Abedi, M.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Angue Mintsa, H.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Boucher, S.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Boyce, M. C.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Brau, R. R.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Breach, D. R.

W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
[CrossRef]

Carter, P.

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

Castro, C. E.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Chester, W.

W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
[CrossRef]

Cooper, J. M.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Cremer, P. S.

H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
[CrossRef] [PubMed]

Desgranges, F.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Di Leonardo, R.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Enger, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Eriksson, E.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Ferrer, J. M.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Furukawa, H.

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Fusco, S.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
[CrossRef]

Galanis, N.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Goksor, M.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Green, J. V.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Greiner, M.

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

Inouye, Y.

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Kamm, R. D.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Kawata, S.

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Kniazeva, T.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Korn, B.

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

Lang, M. J.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Leach, J.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Lee, H.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Mao, H.

H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
[CrossRef] [PubMed]

Mare, T.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Matsudaira, P.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Murthy, S. K.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Mushfique, H.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Nakamura, O.

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Nguyen, C. T.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Padgett, M. J.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Pesce, G.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
[CrossRef]

Proudman, I.

W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
[CrossRef]

Revzin, A.

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Roy, G.

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

Sasso, A.

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
[CrossRef]

Scrimgeour, J.

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Shoji, S.

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Sin, A.

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Sokhey, D. S.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Tam, B. K.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Tarsa, P. B.

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Taslim, M. E.

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Tompkins, R. G.

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Toner, M.

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Wirtz, D.

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu Rev Biophys 38(1), 301–326 (2009).
[CrossRef] [PubMed]

Yang, T.

H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
[CrossRef] [PubMed]

Yin, H.

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Zink, D.

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

Anal. Chem. (1)

H. Mushfique, J. Leach, H. Yin, R. Di Leonardo, M. J. Padgett, and J. M. Cooper, “3D mapping of microfluidic flow in laboratory-on-a-chip structures using optical tweezers,” Anal. Chem. 80(11), 4237–4240 (2008).
[CrossRef] [PubMed]

Annu Rev Biophys (1)

D. Wirtz, “Particle-tracking microrheology of living cells: principles and applications,” Annu Rev Biophys 38(1), 301–326 (2009).
[CrossRef] [PubMed]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992).
[CrossRef] [PubMed]

Biotechnol. Bioeng. (1)

A. Sin, S. K. Murthy, A. Revzin, R. G. Tompkins, and M. Toner, “Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes,” Biotechnol. Bioeng. 91(7), 816–826 (2005).
[CrossRef] [PubMed]

Int. J. Heat Fluid Flow (1)

C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, and H. Angue Mintsa, “Temperature and particle-size dependent viscosity data for water-based nanofluidics - hysteresis phenomenon,” Int. J. Heat Fluid Flow 28(6), 1492–1506 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

H. Mao, T. Yang, and P. S. Cremer, “A microfluidic device with a linear temperature gradient for parallel and combinatorial measurements,” J. Am. Chem. Soc. 124(16), 4432–4435 (2002).
[CrossRef] [PubMed]

J. Fluid Mech. (1)

W. Chester, D. R. Breach, and I. Proudman, “On the flow past a sphere at low Reynolds number,” J. Fluid Mech. 37(04), 751 (1969).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. R. Brau, J. M. Ferrer, H. Lee, C. E. Castro, B. K. Tam, P. B. Tarsa, P. Matsudaira, M. C. Boyce, R. D. Kamm, and M. J. Lang, “Passive and active microrheology with optical tweezers,” J. Opt. A: Pure Appl. Opt. 9(8), S103–S112 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Inouye, S. Shoji, H. Furukawa, O. Nakamura, and S. Kawata, “Pico-Newton friction force measurements using a laser-trapped microsphere,” Jpn. J. Appl. Phys. 37(Part 2, No. 6A), L684–L686 (1998).
[CrossRef]

Lab Chip (1)

J. V. Green, T. Kniazeva, M. Abedi, D. S. Sokhey, M. E. Taslim, and S. K. Murthy, “Effect of channel geometry on cell adhesion in microfluidic devices,” Lab Chip 9(5), 677–685 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

M. Greiner, P. Carter, B. Korn, and D. Zink, “New approach to complete automation in sizing and quantitation of DNA and proteins by the automated lab-on-a-chip platform from Agilent Technologies,” Nat. Methods 1(1), 87–89 (2004).
[CrossRef]

Nat. Rev. Drug Discov. (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

E. Eriksson, J. Scrimgeour, J. Enger, and M. Goksor, “Holographic optical tweezers combined with a microfluidic device for exposing cells to fast environmental changes,” Proc. SPIE 6592, 65920P (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

G. Pesce, A. Sasso, and S. Fusco, “Viscosity measurements on micron-size scale using optical tweezers,” Rev. Sci. Instrum. 76(11), 115105 (2005).
[CrossRef]

Other (2)

P. Becher, Encyclopedia of emulsion technology (Marcel Dekker Inc., 1996).

R. G. Larson, The structure and rheology of complex fluids (Oxford U. Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Multichannel devices with (a) straight channels and (b) a u-shaped channel. The dashed lines indicate the directions of the measurements. (c) An illustration of the microfluic channel with a rectangular cross-section.

Fig. 2
Fig. 2

Theoretical (a) flow velocity and (b) shear stress in the y-z plane of the straight microfluidic channels (h = 120 μm, w = 4 mm).

Fig. 3
Fig. 3

Theoretical and experimental results for (a) fluid velocity and (b) shear stress, in the straight microfluidic channels (h = 120 μm, w = 4 mm).

Fig. 4
Fig. 4

(a) The theoretical fluid velocity along the z direction in the middle of the straight channel. (b) The fluid velocity represented by the shaded region in (a) and illustrations of microspheres of 5, 10 and 15 μm diameter.

Fig. 5
Fig. 5

The measured velocity and shear stress in a curved microchannel.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F t = Q t n 2 P c ,
F d r a g 6 π μ r υ 1 + P b 1 ,
P b 1 = 1 ( 1 9 16 ( r h ) + 1 8 ( r h ) 3 4 256 ( r h ) 4 1 16 ( r h ) 5 ) 1 ,
υ ( y , z ) x = 16 Δ P π 4 μ L Σ n _ o d d Σ m _ o d d 1 n m ( n 2 ω 2 + m 2 h 2 ) sin ( n π w y ) sin ( m π h z ) ,
τ = μ υ x y , z z .

Metrics