Abstract

We demonstrate a picosecond optical parametric oscillator (OPO) that is synchronously pumped by a fiber-amplified gain-switched laser diode. At 24W of pump power, up to 7.3W at 1.54µm and 3.1W at 3.4µm is obtained in separate output beams. The periodically poled MgO-doped LiNbO3 OPO operates with ~17ps pulses at a fundamental repetition rate of 114.8MHz but can be switched to higher repetition rates up to ~1GHz. Tunabilty between 1.4µm and 1.7µm (signal) and 2.9µm and 4.4µm (idler) is demonstrated by translating the nonlinear crystal to access different poling-period gratings and typical M2 values of 1.1 by 1.2 (signal) and 1.6 by 3.2 (idler) are measured at high power for the singly resonant oscillator.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
    [CrossRef]
  2. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3.,” Opt. Lett. 29(10), 1111–1113 (2004).
    [CrossRef] [PubMed]
  3. A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, “2.5-GHz repetition-rate singly resonant optical parametric oscillator synchronously pumped by a mode-locked diode oscillator amplifier system,” Opt. Lett. 25(9), 657–659 (2000).
    [CrossRef]
  4. M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
    [CrossRef]
  5. S. Lecomte, R. Paschotta, M. Golling, D. Ebling, and U. Keller, “Synchronously pumped optical parametric oscillators in the 1.5µm spectral region with a repetition rate of 10GHz,” J. Opt. Soc. Am. B 21(4), 844–850 (2004).
    [CrossRef]
  6. K. K. Chen, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “100W, single mode, single polarization, picosecond, Ytterbium doped fiber MOPA frequency doubled to 530nm,” Conference on Lasers and Electro-Optics (CLEO) Pacific Rim, TuF4–4, Shanghai, China, 30 Aug. – 3 Sep., (2009).
  7. S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
    [CrossRef] [PubMed]
  8. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  9. F. Ganikhanov, S. Carrasco, X. Sunney Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(9), 1292–1294 (2006).
    [CrossRef] [PubMed]
  10. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [CrossRef]
  11. T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
    [CrossRef]
  12. M. J. McCarthy and D. C. Hanna, “All-solid-state synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 10(11), 2180–2190 (1993).
    [CrossRef]
  13. D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D Appl. Phys. 34(16), 2440–2454 (2001).
    [CrossRef]
  14. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27(17), 1543–1545 (2002).
    [CrossRef]
  15. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
    [CrossRef]
  16. L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
    [CrossRef]
  17. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
    [CrossRef]
  18. D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
    [CrossRef]
  19. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
    [CrossRef]

2008

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

2006

2005

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

2004

2003

S.-W. Chu, T.-M. Liu, C.-K. Sun, C.-Y. Lin, and H.-J. Tsai, “Real-time second-harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser,” Opt. Express 11(8), 933–938 (2003).
[CrossRef] [PubMed]

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

2002

2001

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D Appl. Phys. 34(16), 2440–2454 (2001).
[CrossRef]

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

2000

1998

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

1993

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Andres, T.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Beigang, R.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Boller, K.-J.

Borsutzky, A.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Broderick, N. G. R.

Brunner, F.

Carrasco, S.

Chu, S.-W.

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

Della Corte, F. G.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

Ebling, D.

Ebrahimzadeh, M.

Fejer, M. M.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Furusawa, K.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Ganikhanov, F.

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Golling, M.

Haag, P.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Hanna, D. C.

Hoyt, C. W.

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Innerhofer, E.

Iodice, M.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

Ito, H.

Katz, M.

Keller, U.

Kitamura, K.

Klein, M. E.

Kopf, D.

Kurimura, S.

Lecomte, S.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

S. Lecomte, R. Paschotta, M. Golling, D. Ebling, and U. Keller, “Synchronously pumped optical parametric oscillators in the 1.5µm spectral region with a repetition rate of 10GHz,” J. Opt. Soc. Am. B 21(4), 844–850 (2004).
[CrossRef]

Lefort, L.

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

Lin, C.-Y.

Liu, T.-M.

Lowenthal, D. D.

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

Malinowski, A.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
[CrossRef]

McCarthy, M. J.

Meyn, J.-P.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Moretti, L.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

Nilsson, J.

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

O’Connor, M. V.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Paschotta, R.

Pawlick, S.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

Price, J. H. V.

Puech, K.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

Rendina, I.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

Richardson, D. J.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

M. V. O’Connor, M. A. Watson, D. P. Shepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27(12), 1052–1054 (2002).
[CrossRef]

Robertson, A.

Ross, G. W.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Schmidt, B.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

Seitz, W.

Sheik-Bahae, M.

Shepherd, D. P.

Südmeyer, T.

Sun, C.-K.

Sunney Xie, X.

Svirko, Y. P.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

Tremont, M. A.

Tsai, H.-J.

Usami, T.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Wallenstein, R.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

A. Robertson, M. E. Klein, M. A. Tremont, K.-J. Boller, and R. Wallenstein, “2.5-GHz repetition-rate singly resonant optical parametric oscillator synchronously pumped by a mode-locked diode oscillator amplifier system,” Opt. Lett. 25(9), 657–659 (2000).
[CrossRef]

Watson, M. A.

Zelt, S.

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

T. Andres, P. Haag, S. Zelt, J.-P. Meyn, A. Borsutzky, R. Beigang, and R. Wallenstein, “Synchronously pumped femtosecond optical parametric oscillator of congruent and stoichiometric MgO-doped periodically poled lithium niobate,” Appl. Phys. B 76(3), 241–244 (2003).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91(2), 343–348 (2008).
[CrossRef]

Appl. Phys. Lett.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical parametric oscillation out to 6.3µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73(12), 1610–1612 (1998).
[CrossRef]

IEEE J. Quantum Electron.

D. D. Lowenthal, “CW periodically poled LiNbO3 optical parametric oscillator model with strong idler absorption,” IEEE J. Quantum Electron. 34(8), 1356–1366 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Lecomte, R. Paschotta, S. Pawlick, B. Schmidt, K. Furusawa, A. Malinowski, and D. J. Richardson, “Synchronously pumped optical parametric oscillator with a repetition rate of 81.8GHz,” IEEE Photon. Technol. Lett. 17(2), 483–485 (2005).
[CrossRef]

J. Appl. Phys.

L. Moretti, M. Iodice, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficients of lithium niobate, from 300 to 515 K in the visisble and infrared regions,” J. Appl. Phys. 98(3), 036101 (2005).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D Appl. Phys. 34(16), 2440–2454 (2001).
[CrossRef]

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state laser,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Other

K. K. Chen, S.-U. Alam, J. R. Hayes, D. Lin, A. Malinowski, and D. J. Richardson, “100W, single mode, single polarization, picosecond, Ytterbium doped fiber MOPA frequency doubled to 530nm,” Conference on Lasers and Electro-Optics (CLEO) Pacific Rim, TuF4–4, Shanghai, China, 30 Aug. – 3 Sep., (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the amplified gain-switched laser diode pump source. DC = Direct current, LD = Laser diode, PC = Polarization controller, CFBG = Chirped fiber Bragg grating, OI = Optical isolator, EOM = Electro-optical modulator, WDM = Wavelength division multiplexer, YDF = Ytterbium-doped fiber, PM = Polarization-maintaining, DM = Dichroic mirror, PBS = Polarizing beamsplitter. Dashed and solid lines represent electrical and optical connections, respectively.

Fig. 2
Fig. 2

Schematic diagram of the standing-wave cavity

Fig. 3
Fig. 3

Low power characterization of the standing-wave cavity. The linear fits are to the first five data points. The signal output coupler used had a reflectivity of R = 95%.

Fig. 4
Fig. 4

Output power characterization of the ring cavity at (a) 114.8MHz, (b) 459.2MHz, and (c) 918.4MHz. The linear fits are to the first ten data points in (c). The signal output coupler used has a reflectivity of R = 65%. Wavelength tuning against poled grating period is shown in (d) with the temperature of the crystal held at 150°C. The idler wavelengths are inferred from the measured signal wavelengths.

Fig. 5
Fig. 5

Interferometric autocorrelation of the 3.4µm idler pulse suggesting bandwidth-limited performance. The FWHM pulse duration, assuming a Gaussian temporal pulse shape, is ~17ps. The individual fringes are too close together to be resolved in this figure.

Fig. 6
Fig. 6

Comparison of the spectra of the input pump and the residual pump (after depletion) at 24W incident average pump power at (a) 918.4MHz and (b) 114.8MHz, with the latter spectra showing broadening due to self-phase modulation in the fiber amplifiers. The curves are normalized to the ratio of their measured average powers. (c) and (d) show the corresponding signal bandwidths at 918.4MHz and 114.8MHz.

Tables (1)

Tables Icon

Table 1 M2 beam quality measurements

Metrics