Abstract

We achieve a broadband unidirectional transmission or One-way diffraction grating by cascading two parallel gratings made of isotropic material with different periods. In order to significantly reduce the reciprocal transmission of the zero order, one of them is chosen to be a subwavelength grating and designed as a wideband reflector for the incident-wave. It is demonstrated that more than 65 percent of the incident-wave energy can be transmitted unidirectionally with less than 0.22 percent transmission in the opposite direction at normal incidence for TE polarization. And, the relative bandwidth of the unidirectional transmission is greater than 10 percent.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
    [CrossRef] [PubMed]
  2. F. D. M. Haldane, and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” arXiv:cond-mat/0503588 (2008).
  3. M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
    [CrossRef]
  4. A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
    [CrossRef]
  5. A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009).
    [CrossRef] [PubMed]
  6. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [CrossRef] [PubMed]
  7. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
    [CrossRef]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
    [CrossRef]
  9. W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
    [CrossRef]

2009

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009).
[CrossRef] [PubMed]

2008

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

2006

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

2004

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chen, L.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Hibbins, A. P.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Ji, J. R.

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Lockyear, M. J.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Ozbay, E.

Sambles, J. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

Serebryannikov, A. E.

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

A. E. Serebryannikov and E. Ozbay, “Isolation and one-way effects in diffraction on dielectric gratings with plasmonic inserts,” Opt. Express 17(1), 278–292 (2009).
[CrossRef] [PubMed]

Shokooh-Saremi, M.

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

White, K. R.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

Ye, W. M.

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

Yuan, X. D.

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

Zeng, C.

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Chin. Phys. Lett.

W. M. Ye, X. D. Yuan, J. R. Ji, and C. Zeng, “Calculation of guided modes and leaky modes in photonic crystal slabs,” Chin. Phys. Lett. 21(8), 1545–1548 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16(7), 1676–1678 (2004).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index contrast subwavelength grating,” Nat. Photonics 1(2), 119–122 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

A. E. Serebryannikov, “One-way diffraction effects in photonic crystal gratings made of isotropic materials,” Phys. Rev. B 80(15), 155117 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

M. J. Lockyear, A. P. Hibbins, K. R. White, and J. R. Sambles, “One-way diffraction grating,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 74(5 Pt 2), 056611 (2006).
[CrossRef]

Phys. Rev. Lett.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100(1), 013905 (2008).
[CrossRef] [PubMed]

Other

F. D. M. Haldane, and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” arXiv:cond-mat/0503588 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the proposed OWDG.

Fig. 2
Fig. 2

Reflectance (a) and transmittance (b) spectra of the subwavelength Si/SiO2 grating (thickness h = 0.3a, filling factor f = 0.36) at normal incidence for TE polarization.

Fig. 3
Fig. 3

Transmittance spectra of the subwavelength Si/SiO2 grating for the TE polarization with the incident angle θ = 0°, 2°, 5° and 10°.

Fig. 4
Fig. 4

Spectra of the zero-order, 1st-order and 2nd-order transmission diffraction coefficient’s norm of the SiO2/air grating (period a 2 = 2a, thickness h 2 = 1.4a, filling factor f 2 = 0.4) at normal incidence from the top air for TE polarization.

Fig. 5
Fig. 5

Two typical structures of OWDG, denoted by OWDG-A and OWDG-B, are designed to be invariant under the mirror reflection σx that changes x to –x.

Fig. 6
Fig. 6

Transmittance spectra of the OWDG-A and OWDG-B (thickness d = 4a) at normal incidence for TE polarization from the air cover (a) and the SiO2 substrate (b).

Fig. 7
Fig. 7

(a) Transmittance spectra of the OWDG-A at normal incidence for TE polarization from the air cover and (b) the spectra of TC / TS with different thickness d of the homogeneous SiO2 layer

Fig. 8
Fig. 8

Transmittance spectra (a) and the spectra of TC / TS (b) of the OWDG-A (thickness d = 4a) for the TE polarization with the different incident angle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ω c n s i o 2 sin θ c < | k x m | = | k x 0 + 2 π a 2 m | < ω c n s i o 2 < 2 π a n s i o 2

Metrics