Abstract

We investigate the effects of pulse duration on optical trapping with high repetition rate ultrashort pulsed lasers, through Lorentz-Mie theory, numerical simulation, and experiment. Optical trapping experiments use a 12 femtosecond duration infrared pulsed laser, with the trapping microscope’s temporal dispersive effects measured and corrected using the Multiphoton Intrapulse Interference Phase Scan method. We apply pulse shaping to reproducibly stretch pulse duration by 1.5 orders of magnitude and find no material-independent effects of pulse temporal profile on optical trapping of 780nm silica particles, in agreement with our theory and simulation. Using pulse shaping, we control two-photon fluorescence in trapped fluorescent particles, opening the door to other coherent control applications with trapped particles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
    [CrossRef] [PubMed]
  3. K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmár, "Cellular and colloidal separation using optical forces" in "Laser manipulation of cells and tissues methods in cell biology," M. Berns and K. Greulich, ed., 82, 467-495 (Elsevier, 2007).
  4. G. C. Spalding, J. Courtial, and R. D. Leonardo, "Holographic optical tweezers," in "Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces," D. L. Andrews, ed., (Elsevier, 2008) pp. 139-168.
  5. K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).
  6. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
    [CrossRef]
  7. L. Malmqvist and H. M. Hertz, "2nd-harmonic generation in optically trapped nonlinear particles with pulsed lasers," Appl. Opt. 34, 3392-3397 (1995).
    [CrossRef] [PubMed]
  8. E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
    [PubMed]
  9. B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
    [CrossRef] [PubMed]
  10. K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
    [CrossRef]
  11. A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
    [CrossRef]
  12. N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006).
    [CrossRef] [PubMed]
  13. D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004).
    [CrossRef] [PubMed]
  14. D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
    [CrossRef]
  15. S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
    [CrossRef]
  16. J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
    [CrossRef]
  17. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
    [CrossRef]
  18. J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, "Numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers," Opt. Express 13, 3673-3680 (2005).
    [CrossRef] [PubMed]
  19. A. A. Ambardekar and Y. Q. Li, "Optical levitation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005).
    [CrossRef] [PubMed]
  20. L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
    [CrossRef]
  21. L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
    [CrossRef] [PubMed]
  22. L.-G. Wang and C.-L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express 15, 10615-10621 (2007).
    [CrossRef] [PubMed]
  23. A. K. De, D. Roy, A. Dutta, and D. Goswami, "Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination," Appl. Opt. 48, G33-G37 (2009).
    [CrossRef] [PubMed]
  24. Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
    [CrossRef]
  25. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  26. S. Stallinga, "Radiation force on a Fabry-Perot slab immersed in a dielectric," Opt. Express 14, 1286-1295 (2006).
    [CrossRef] [PubMed]
  27. J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
    [CrossRef]
  28. R. Loudon and S. M. Barnett, "Theory of the radiation pressure on dielectric slabs, prisms and single surfaces," Opt. Express 14, 11855-11869 (2006).
    [CrossRef] [PubMed]
  29. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2007).
    [CrossRef]
  30. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Reports 52, 133-201 (1979).
    [CrossRef]
  31. M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
    [CrossRef]
  32. F. Gittes and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23, 7-9 (1998).
    [CrossRef]
  33. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  34. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the Multiphoton Intrapulse Interference Phase Scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
    [CrossRef]
  35. M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).
  36. J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).
  37. K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994).
    [CrossRef]
  38. N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
    [CrossRef] [PubMed]
  39. Y. Coello, B. Xu, T. Miller, V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using Multiphoton Intrapulse Interference Phase Scan," Appl. Opt. 46, 8394-8401 (2007).
    [CrossRef] [PubMed]
  40. V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
    [CrossRef]
  41. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
    [CrossRef] [PubMed]

2009 (1)

2008 (6)

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
[CrossRef]

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
[CrossRef] [PubMed]

2007 (6)

L.-G. Wang and C.-L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express 15, 10615-10621 (2007).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
[CrossRef]

L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
[CrossRef]

M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2007).
[CrossRef]

Y. Coello, B. Xu, T. Miller, V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using Multiphoton Intrapulse Interference Phase Scan," Appl. Opt. 46, 8394-8401 (2007).
[CrossRef] [PubMed]

2006 (7)

V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
[CrossRef]

R. Loudon and S. M. Barnett, "Theory of the radiation pressure on dielectric slabs, prisms and single surfaces," Opt. Express 14, 11855-11869 (2006).
[CrossRef] [PubMed]

S. Stallinga, "Radiation force on a Fabry-Perot slab immersed in a dielectric," Opt. Express 14, 1286-1295 (2006).
[CrossRef] [PubMed]

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the Multiphoton Intrapulse Interference Phase Scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
[CrossRef]

N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006).
[CrossRef] [PubMed]

2005 (4)

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

J. L. Deng, Q. Wei, Y. Z. Wang, and Y. Q. Li, "Numerical modeling of optical levitation and trapping of the stuck particles with a pulsed optical tweezers," Opt. Express 13, 3673-3680 (2005).
[CrossRef] [PubMed]

A. A. Ambardekar and Y. Q. Li, "Optical levitation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005).
[CrossRef] [PubMed]

2004 (7)

D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004).
[CrossRef] [PubMed]

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
[CrossRef] [PubMed]

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

1994 (1)

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994).
[CrossRef]

1991 (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

1979 (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Reports 52, 133-201 (1979).
[CrossRef]

1973 (1)

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

Agate, B.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
[CrossRef] [PubMed]

Ajito, K.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Ambardekar, A. A.

Ashida, M.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Barbosa, L. C.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Barnett, S. M.

Bechhoefer, J.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994).
[CrossRef]

Brevik, I.

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Reports 52, 133-201 (1979).
[CrossRef]

Brown, C. T. A.

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
[CrossRef] [PubMed]

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Cesar, C. L.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Chan, J. W.

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

Chiou, A.

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

Chon, J. W. M.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Coello, Y.

Comstock, M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

Cruz, J. M. D.

Dantus, M.

Y. Coello, B. Xu, T. Miller, V. Lozovoy, and M. Dantus, "Group-velocity dispersion measurements of water, seawater, and ocular components using Multiphoton Intrapulse Interference Phase Scan," Appl. Opt. 46, 8394-8401 (2007).
[CrossRef] [PubMed]

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the Multiphoton Intrapulse Interference Phase Scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
[CrossRef]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

De, A. K.

de Paula, A. M.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

de Thomaz, A. A.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Dela Cruz, J. M.

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

Deng, J. L.

Deng, Y.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
[CrossRef]

Dholakia, K.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
[CrossRef]

N. K. Metzger, E. M. Wright, W. Sibbett, and K. Dholakia, "Visualization of optical binding of microparticles using a femtosecond fiber optical trap," Opt. Express 14, 3677-3687 (2006).
[CrossRef] [PubMed]

B. Agate, C. T. A. Brown, W. Sibbett, and K. Dholakia, "Femtosecond optical tweezers for in-situ control of two-photon fluorescence," Opt. Express 12, 3011-3017 (2004).
[CrossRef] [PubMed]

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
[CrossRef]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Dutta, A.

Fontes, A.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Forde, N. R.

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
[CrossRef]

Gan, X.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Gan, X. S.

D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
[CrossRef]

D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004).
[CrossRef] [PubMed]

Gittes, F.

Gordon, J. P.

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

Goswami, D.

Gu, M.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
[CrossRef]

D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004).
[CrossRef] [PubMed]

Gunn, J. M.

Hertz, H. M.

Huser, T.

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

Ichimiya, M.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Iida, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Imaizumi, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Inaba, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Ishihara, H.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Ishikawa, A.

L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
[CrossRef]

Itoh, T.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Jauffred, L.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
[CrossRef] [PubMed]

Kao, F. J.

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

Karmenyan, A. V.

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

Katayama, K.

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Kitamura, N.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Kuriakose, S.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Lane, S. M.

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

Lee, W. M.

K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

Li, Y. Q.

Little, H.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Loudon, R.

Lozovoy, V.

Lozovoy, V. V.

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the Multiphoton Intrapulse Interference Phase Scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006).
[CrossRef]

V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
[CrossRef]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

Malmqvist, L.

Mansuripur, M.

Masuhara, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Mazilu, M.

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
[CrossRef]

McGloin, D.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Metzger, N. K.

Miller, T.

Misawa, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Moreira, W. L.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Morrish, D.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
[CrossRef]

D. Morrish, X. S. Gan, and M. Gu, "Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser," Opt. Express 12, 4198-4202 (2004).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Neves, A. A. R.

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Oddershede, L. B.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
[CrossRef] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Pan, L.

L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
[CrossRef]

Pastirk, I.

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton Intrapulse Interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

Paterson, L.

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Perevedentseva, E. V.

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

Richardson, A. C.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
[CrossRef] [PubMed]

Roy, D.

Sasaki, K.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

Schmidt, C. F.

Shane, J.

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

Shane, J. C.

V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
[CrossRef]

Sibbett, W.

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

Stallinga, S.

Svoboda, K.

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994).
[CrossRef]

Tamai, N.

L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
[CrossRef]

Wang, L.-G.

Wang, Y. Z.

Wei, Q.

Winhold, H.

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

Wright, E. M.

Xu, B.

Zhao, C.-L.

Adv. Atomic, Molecular, Opt. Physics (1)

K. Dholakia and W. M. Lee, "Optical trapping takes shape: the use of structured light fields," Adv. Atomic, Molecular, Opt. Physics 56, 261-337 (2008).

Annual Reviews in Biophysics and Biomolecular Structure (1)

K. Svoboda and S. M. Block, "Biological applications of optical forces," Annual Reviews in Biophysics and Biomolecular Structure 23, 247-285 (1994).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. Morrish, X. S. Gan, and M. Gu, "Scanning particle trapped optical microscopy based on two-photon-induced morphology-dependent resonance in a trapped microsphere," Appl. Phys. Lett. 88, 141103 (2006).
[CrossRef]

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 37, 42-55 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, "Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles," IEEE J. Sel. Top. Quantum Electron. 11, 858-863 (2005).
[CrossRef]

J. Appl. Phys. (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, "Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water," J. Appl. Phys. 70, 3829 (1991).
[CrossRef]

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, "Optical manipulation of nanoparticles: a review," J. Nanophotonics 2, 021875 (2008).
[CrossRef]

J. Opt. A: Pure and Applied Optics (1)

Y. Deng, J. Bechhoefer, and N. R. Forde, "Brownian motion in a modulated optical trap," J. Opt. A: Pure and Applied Optics 9, S256-S263 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

M. Dantus, V. V. Lozovoy, and I. Pastirk, "MIIPS characterizes and corrects femtosecond pulses," Laser Focus World 43, 101-104 (2007).

Nano Lett. (1)

L. Jauffred, A. C. Richardson, and L. B. Oddershede, "Three-dimensional optical control of individual quantum dots," Nano Lett. 8, 3376-3380 (2008).
[CrossRef] [PubMed]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002).
[CrossRef] [PubMed]

New J. Phys. (1)

K. Dholakia, H. Little, C. T. A. Brown, B. Agate, D. McGloin, L. Paterson, and W. Sibbett, "Imaging in optical micromanipulation using two-photon excitation," New J. Phys. 6, 136 (2004).
[CrossRef]

Opt. Express (8)

Opt. Lett. (3)

Phys. Reports (1)

I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Reports 52, 133-201 (1979).
[CrossRef]

Phys. Rev. A (2)

J. P. Gordon, "Radiation forces and momenta in dielectric media," Phys. Rev. A 8, 14-21 (1973).
[CrossRef]

V. V. Lozovoy, B. Xu, J. C. Shane, and M. Dantus, "Selective nonlinear optical excitation with pulses shaped by pseudorandom Galois fields," Phys. Rev. A 74, 41805 (2006).
[CrossRef]

Phys. Rev. B (1)

L. Pan, A. Ishikawa, and N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Phys. Rev. B 75, 161305 (2007).
[CrossRef]

Phys. Rev. E (1)

A. Fontes, K. Ajito, A. A. R. Neves, W. L. Moreira, A. A. de Thomaz, L. C. Barbosa, A. M. de Paula, and C. L. Cesar, "Raman, hyper-Raman, hyper-Rayleigh, two-photon luminescence and morphology-dependent resonance modes in a single optical tweezers system," Phys. Rev. E 72, 012903 (2005).
[CrossRef]

Physica Status Solidi B (1)

K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, and T. Itoh, "Optical manipulation of CuCl nanoparticles under an excitonic resonance condition in superfluid helium," Physica Status Solidi B 243, 3829-3833 (2006).
[CrossRef]

Proc. Natl. Acad. Sci., USA (1)

J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, and M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci., USA 101, 16996-7001 (2004).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Optical trapping using ultrashort 12.9fs pulses," Optical Trapping and Optical Micromanipulation V, Proc. SPIE,  7038, 70380Y (2008).

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Scanning (1)

E. V. Perevedentseva, A. V. Karmenyan, F. J. Kao, and A. Chiou, "Second harmonic generation of biotin and biotin ester microcrystals trapped in optical tweezers with a mode-locked Ti : Sapphire laser," Scanning 26, I78-I82 (2004).
[PubMed]

Other (3)

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmár, "Cellular and colloidal separation using optical forces" in "Laser manipulation of cells and tissues methods in cell biology," M. Berns and K. Greulich, ed., 82, 467-495 (Elsevier, 2007).

G. C. Spalding, J. Courtial, and R. D. Leonardo, "Holographic optical tweezers," in "Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces," D. L. Andrews, ed., (Elsevier, 2008) pp. 139-168.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical impulse transfer to a scattering cylinder by a 12fs (a,c) and a 40fs (b,d) Gaussian beam pulse, as a function of time. Red curves correspond to Maxwell’s stress tensor integral (15), green to the first Lorentz force method (17) and blue to the surface force (18) and a second Lorentz force method (16) which are identical in this configuration. The black horizontal line corresponds to total impulse transfer per pulse, which is identical for all pulse durations and all calculation methods. (a,b) Impulse originating from the scattering force on a centred cylinder and (c,d) impulse originating from the radial trapping force calculated by displacing the cylinder laterally with respect to the axis of the beam.

Fig. 2.
Fig. 2.

Experimental setup, consisting of an ultrashort pulsed laser, a pulse shaper, and a homebuilt optical trapping microscope. The laser is a 800MHz 800nm Ti:Sapphire system capable of producing 12fs pulses. Before entering the microscope, the beam travels through a pulse shaper (BioPhotonic Systems, Inc), containing a 640-pixel spatial light modulator (CRi), used to implement the Multiphoton Intrapulse Interference Phase Scan (MIIPS) method of dispersion measurement and compensation. The optical trapping microscope has quadrant photodiode (QPD) position detection, white light illumination, CCD imaging, and a spectrometer for detection of fluorescence signal at the sample plane.

Fig. 3.
Fig. 3.

Measured trap stiffness of 780nm diameter silica particles in the x, y, and z directions, trapped in 3D using a pulsed 780nm Ti:Sapphire laser. Each data point shows the average of a 40 second acquisition for each of three trapped particles. Pulse duration was varied from 12fs to 500fs using positive 2nd-order phase modulation in addition to a phase function that compensated the measured dispersion of the system. For all measurements, the average power at the sample plane was 47mW. The lines show the trap stiffness (fN/nm): x: 58.6±0.6, y: 64.1±0.6, z: 10.9±0.1. The fluctuations of the trap stiffness are about 10% over the whole range of pulse duration considered.

Fig. 4.
Fig. 4.

Optical impulse transfer to a Rayleigh particle in water using the same parameters as reference [22]. (a) Peak force as a function of pulse duration showing an inverse-proportional relationship. (b) Axial impulse transfer to the same Rayleigh particle as a function of time for pulses of 100fs, 500fs and 1ps showing that regardless of the pulse duration, the total momentum transfer is the same.

Fig. 5.
Fig. 5.

Control of two-photon fluorescence in 3D trapped 2.1μm blue fluorescently-dyed polymer particles. Two-photon fluorescence spectra were measured with four different pulse durations, with pulse duration varied by introducing 2nd order dispersion with a pulse shaper. The same average power (3mW) was used for all measurements. We remark that the two photon fluorescence saturates for such ultrashort pulses and the position of the spheres may vary between measurements.

Tables (1)

Tables Icon

Table 1. Amount of 2nd order dispersion used to produce desired pulse durations. γ 2 is the amount of 2nd order dispersion in fs2, and ω 0 is the centre frequency of the phase function. In our case, ω 0 was chosen to be 2.48 * 1015rad/s (corresponding to λ 0 = 759nm). The resulting FWHM pulse duration (assuming a roughly Gaussian time profile) is calculated using inverse Fourier transform.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

E ( x , y , z , t ) = 𝓔 ( x , y , z ) a ( t )
H ( x , y , z , t ) = 𝓗 ( x , y , z ) a ( t )
E ( x , y , z , t ) = 𝓔 ( x , y , z ) a ̂ ( ω ) e iωt d ω
H ( x , y , z , t ) = 𝓗 ( x , y , z ) a ̂ ( ω ) e iωt d ω
f i = j T ij t g i
T ij = E i D j + H i B j 1 2 δ ij ( E k D k + H k B k )
g i = ε ijk D j B k
0 Δ t t g i d t = g i ( Δ t ) g i ( 0 )
< F i > = 1 Δ t 0 Δ t f i d V d t
= 1 Δ t 0 Δ t S T ij d s j d t
< F i > = 1 Δ t S 0 Δ t T ij dt d s j
= 1 Δ t S 0 Δ t [ E i D j + H i B j 1 2 δ ij ( E k D k + H k B k ) ] d t d s j
= 1 Δ t [ S 0 Δ t E i D j d t d s j + S 0 Δt H i B j dtd s j +... ]
S 0 Δt E i D i d t d s j = ε r ε 0 S 0 Δ t E i E j d t d s j
= ε r ε 0 S 0 Δ t ( 𝓔 i a ^ ( ω 1 ) e ω 1 t d ω 1 ) ( 𝓔 i a ^ ( ω 2 ) e ω 2 t d ω 2 )    d t d s j
= ε r ε 0 S 𝓔 i 𝓔 j a ^ ( ω 1 ) a ^ ( ω 2 ) [ 0 Δ t e i ( ω 1 + ω 2 ) t d t ]    d ω 1 d ω 2 d s j
+ e iωt d t = δ ( ω )
S 0 τ E i D j d t d s j = ε r ε 0 S 𝓔 i 𝓔 j a ̂ ( ω 1 ) a ̂ ( ω 2 ) δ ( ω 1 + ω 2 ) d ω 1 d ω 2 d s j
= ε r ε 0 S 𝓔 i 𝓔 j a ̂ ( ω 1 ) a ̂ * ( ω 1 ) d ω 1 d s j
a ( t ) = T 0 / T exp ( t 2 / T 2 ) cos ( b t 2 ω 0 t )
a ̂ ( ω ) = 1 2 T 0 T 2 2 i b T 2 exp ( T 2 ( ω ω 0 ) 2 4 4 i b T 2 ) + c . c .
F i ( t ) = v ( j T ij t g i ) d x 3
F ( t ) = v ( D · ) E + ( B · ) H 1 2 ( D · E + B · H ) t g d x 3
= S ( D · n ) E + ( B · n ) H 1 2 ( D · E + B · H ) n d s v t g d x 3
F ( t ) = v ( P · ) E + t P × μ 0 H t g d x 3
= v = ( · P ) E + t P × μ 0 H t g d x 3
F ( t ) = v ε 0 2 ( E · E ) ε r t g d x 3
S ( t ) = Δ t / 2 t F ( τ ) , d τ

Metrics