Abstract

One-dimensional Pr3+-doped CaTiO3 microfibers were fabricated by a simple and cost-effective electronspinning process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential analysis (TG-DTA), scanning electron microscopy (SEM), energy-dispersive X-ray spectrum (EDS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), quantum efficiency (QE), and cathodoluminescence (CL) spectra as well as kinetic decays were used to characterize the samples. Under ultraviolet excitation and low-voltage electron beams (1-3 kV) excitation, the CaTiO3:x Pr3+ samples show the red emission at 612 nm, corresponding to 1D2-3H4 transition of Pr3+. The luminescence intensity, quantum efficiency, and the lifetime have been studied as a function of the doping concentration of Pr3+ in the CaTiO3 samples.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
    [CrossRef]
  2. X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
    [CrossRef]
  3. P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
    [CrossRef]
  4. N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
    [CrossRef]
  5. G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
    [CrossRef] [PubMed]
  6. L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).
  7. H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
    [CrossRef]
  8. S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
    [CrossRef]
  9. N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
    [CrossRef]
  10. P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
    [CrossRef]
  11. H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
    [CrossRef]
  12. T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
    [CrossRef]
  13. B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005).
    [CrossRef]
  14. J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
    [CrossRef]
  15. R. Yadav, A. F. Khan, A. Yadav, H. Chander, D. Haranath, B. K. Gupta, V. Shanker, and S. Chawla, “Intense red-emitting Y4Al2O9:Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel,” Opt. Express 17(24), 22023–22030 (2009).
    [CrossRef] [PubMed]
  16. M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
    [CrossRef] [PubMed]
  17. W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1-xSr2+xAlO5-xFx solid solutions for solid state white lighting,” Opt. Express 17(25), 22673–22679 (2009).
    [CrossRef]
  18. S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
    [CrossRef]
  19. M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995).
    [CrossRef]
  20. X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
    [CrossRef]
  21. X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
    [CrossRef]
  22. A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
    [CrossRef]
  23. R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
    [CrossRef]
  24. E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
    [CrossRef]
  25. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
    [CrossRef]
  26. A. Formhals, “Process and apparatus for preparing artificial threads,” (US Patents, 1934).
  27. D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
    [CrossRef]
  28. Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
    [CrossRef] [PubMed]
  29. G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, “Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning,” Opt. Express 17(25), 22514–22519 (2009).
    [CrossRef]
  30. J. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev. 105(6), 1740–1750 (1957).
    [CrossRef]
  31. S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998).
    [CrossRef]
  32. W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
    [CrossRef]
  33. P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
    [CrossRef]
  34. T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).
  35. T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
    [CrossRef]
  36. C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev. 117(2), 455–459 (1960).
    [CrossRef]

2009 (9)

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

M. Peng, N. Da, S. Krolikowski, A. Stiegelschmitt, and L. Wondraczek, “Luminescence from Bi2+-activated alkali earth borophosphates for white LEDs,” Opt. Express 17(23), 21169–21178 (2009).
[CrossRef] [PubMed]

R. Yadav, A. F. Khan, A. Yadav, H. Chander, D. Haranath, B. K. Gupta, V. Shanker, and S. Chawla, “Intense red-emitting Y4Al2O9:Eu3+ phosphor with short decay time and high color purity for advanced plasma display panel,” Opt. Express 17(24), 22023–22030 (2009).
[CrossRef] [PubMed]

G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, “Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning,” Opt. Express 17(25), 22514–22519 (2009).
[CrossRef]

W. B. Im, Y. Fourré, S. Brinkley, J. Sonoda, S. Nakamura, S. P. DenBaars, and R. Seshadri, “Substitution of oxygen by fluorine in the GdSr2AlO5:Ce3+ phosphors: Gd1-xSr2+xAlO5-xFx solid solutions for solid state white lighting,” Opt. Express 17(25), 22673–22679 (2009).
[CrossRef]

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

2008 (3)

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

2007 (4)

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

2006 (3)

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

2005 (2)

B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

2004 (1)

D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

2001 (1)

R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
[CrossRef]

2000 (1)

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

1998 (1)

S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998).
[CrossRef]

1997 (3)

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

1996 (1)

S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
[CrossRef]

1995 (1)

M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995).
[CrossRef]

1994 (1)

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

1960 (1)

C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev. 117(2), 455–459 (1960).
[CrossRef]

1957 (1)

J. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev. 105(6), 1740–1750 (1957).
[CrossRef]

Abrams, B.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Anpo, M.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Arakawa, Y.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Asami, K.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Azhari, S.

S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998).
[CrossRef]

Bang, J.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Boutinaud, P.

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

Brinkley, S.

Caruso, R.

R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
[CrossRef]

Chadha, S.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Chai, R.

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Chander, H.

Chawla, S.

Chen, D.

G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, “Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning,” Opt. Express 17(25), 22514–22519 (2009).
[CrossRef]

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

Chen, J.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Cheng, Z.

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Chi, Y.

Cho, S.

S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
[CrossRef]

Chong, P.

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Cousseins, J.

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

Da, N.

de Figueiredo, A.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

de Lazaro, S.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

De Vicente, F.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

DenBaars, S. P.

Diab, M.

S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998).
[CrossRef]

Diallo, P.

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

Dierre, B.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Dong, G.

Dubois, M.

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

Evans, D.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Fang, L.

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Feldman, C.

C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev. 117(2), 455–459 (1960).
[CrossRef]

Fourré, Y.

Fujii, T.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Gibbons, C.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Greiner, A.

R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
[CrossRef]

Gupta, B. K.

Hanawa, T.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Hao, J.

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

Haranath, D.

Hernandes, A.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

Hirosaki, N.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Holloway, P.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Hou, Z.

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Im, W. B.

Imai, Y.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Inaguma, Y.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Inoue, K.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Itoh, M.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Jia, D.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Jia, P.

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

Jia, W.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Jones, S.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Katsumata, T.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Kawauchi, O.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Khan, A. F.

Kim, T.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Kodaira, K.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Koh, J.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Kohgo, T.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Konishi, H. M.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Krolikowski, S.

Last, J.

J. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev. 105(6), 1740–1750 (1957).
[CrossRef]

Lee, J.

S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
[CrossRef]

Leite, E.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Lencka, M.

M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995).
[CrossRef]

Li, C.

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Li, D.

D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Li, G.

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

Li, H.

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

Li, T.

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Lian, H.

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Liang, C. L.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Lieber, C.

E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Lin, J.

G. Li, C. Li, Z. Hou, C. Peng, Z. Cheng, and J. Lin, “Nanocrystalline LaOCl:Tb(3+)/Sm(3+) as promising phosphors for full-color field-emission displays,” Opt. Lett. 34(24), 3833–3835 (2009).
[CrossRef] [PubMed]

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

Liu, X.

G. Dong, Y. Chi, X. Xiao, X. Liu, B. Qian, Z. Ma, E. Wu, H. Zeng, D. Chen, and J. Qiu, “Fabrication and optical properties of Y2O3: Eu3+ nanofibers prepared by electrospinning,” Opt. Express 17(25), 22514–22519 (2009).
[CrossRef]

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

Longo, E.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Longo, V.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

Ma, Z.

Mahiou, R.

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

Mastelaro, V.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

Mazzo, T.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Meltzer, R.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Miura, N.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Moreira, M.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Morton, D.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Nakamura, S.

Ohtsu, N.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Pan, Y. X.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Peng, C.

Peng, M.

Peng, X.

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Perazolli, L.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Picon, F.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Pinaatti, I.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Pinel, E.

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

Qian, B.

Qiu, J.

Ren, X.

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

Riman, R.

M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995).
[CrossRef]

Rodriguez, T.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Rosa, I.

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Saito, K.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Sato, K.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Schattka, J.

R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
[CrossRef]

Sebastian, J.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Sekiguchi, T.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Seshadri, R.

Shanker, V.

Sheehan, P.

E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Shen, M.

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Shimada, K.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Siu Li, M.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

Smith, D.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Sonoda, J.

Stiegelschmitt, A.

Takashima, H.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Tamura, K.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Tanaka, N.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Tang, J.

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Tang, W.

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

Thomes, W.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Trottier, T.

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Ueda, K.

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

Varela, J.

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Vecht, A.

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Vink, A.

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

Wang, J.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Wang, L.

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Wang, X.

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

Wang, Z.

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

Williams, I. D.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Wondraczek, L.

Wong, E.

E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Wu, E.

Wu, M. M.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Wu, X.

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Xia, Y.

D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Xiao, X.

Xie, R.

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Xu, H. F.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Xu, S.

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

Xu, Z.

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Yadav, A.

Yadav, R.

Yamashita, H.

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

Yan, B.

B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005).
[CrossRef]

Yanagawa, A.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Yang, L.

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Yang, P.

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

Yang, X. F.

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

Yen, W.

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

Yin, S.

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

Yokoyama, A.

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

Yoo, J.

S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
[CrossRef]

Yu, X.

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Yuan, Y.

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

Zeng, H.

Zhang, C.

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Zhang, J.

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

Zhang, M.

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

Zheng, F.

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

Zhou, C.

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Zhou, K.

B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005).
[CrossRef]

Adv. Mater. (3)

H. Takashima, K. Shimada, N. Miura, T. Katsumata, Y. Inaguma, K. Ueda, and M. Itoh, “Low-driving-voltage electroluminescence in perovskite films,” Adv. Mater. 21(36), 3699–3702 (2009).
[CrossRef]

R. Caruso, J. Schattka, and A. Greiner, “Titanium dioxide tubes from sol-gel coating of electrospun polymer fibers,” Adv. Mater. 13(20), 1577–1579 (2001).
[CrossRef]

D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?” Adv. Mater. 16(14), 1151–1170 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

N. Hirosaki, R. Xie, K. Inoue, T. Sekiguchi, B. Dierre, and K. Tamura, “Blue-emitting AlN: Eu2+ nitride phosphor for field emission displays,” Appl. Phys. Lett. 91(6), 061101 (2007).
[CrossRef]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939 (1982).
[CrossRef]

Chem. Mater. (1)

M. Lencka and R. Riman, “Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates,” Chem. Mater. 7(1), 18–25 (1995).
[CrossRef]

J. Alloy. Comp. (2)

T. Li, M. Shen, L. Fang, F. Zheng, and X. Wu, “Effect of Ca deficiencies on the photoluminescence of CaTiO3: Pr3+,” J. Alloy. Comp. 474(1-2), 330–333 (2009).
[CrossRef]

B. Yan and K. Zhou, “In situ sol-gel composition of inorganic/organic polymeric hybrid precursors to synthesize red-luminescent CaTiO3: Pr3+ and CaTi0. 5Zr0. 5O3: Pr3+ phosphors,” J. Alloy. Comp. 398(1-2), 165–169 (2005).
[CrossRef]

J. Appl. Phys. (2)

X. Liu, P. Jia, J. Lin, and G. Li, “Monodisperse spherical core-shell structured SiO2–CaTiO3: Pr3+ phosphors for field emission displays,” J. Appl. Phys. 99(12), 124902 (2006).
[CrossRef]

P. Holloway, T. Trottier, J. Sebastian, S. Jones, X. Zhang, J. Bang, B. Abrams, W. Thomes, and T. Kim, “Degradation of field emission display phosphors,” J. Appl. Phys. 88(1), 483 (2000).
[CrossRef]

J. Biomed. Mater. Res. A (1)

N. Ohtsu, K. Sato, A. Yanagawa, K. Saito, Y. Imai, T. Kohgo, A. Yokoyama, K. Asami, and T. Hanawa, “CaTiO3 coating on titanium for biomaterial application-optimum thickness and tissue response,” J. Biomed. Mater. Res. A 82A(2), 304–315 (2007).
[CrossRef]

J. Electrochem. Soc. (2)

H. Li, Z. Wang, S. Xu, and J. Hao, “Improved performance of spherical BaWO4: Tb3+ phosphors for field-emission displays,” J. Electrochem. Soc. 156(5), J112 (2009).
[CrossRef]

S. Cho, J. Yoo, and J. Lee, “Synthesis and low-voltage characteristics of CaTiO3: Pr3+ luminescent powders,” J. Electrochem. Soc. 143(10), L231 (1996).
[CrossRef]

J. Lumin. (3)

A. de Figueiredo, V. Longo, S. de Lazaro, V. Mastelaro, F. De Vicente, A. Hernandes, M. Siu Li, J. Varela, and E. Longo, “Blue-green and red photoluminescence in CaTiO3: Sm,” J. Lumin. 126(2), 403–407 (2007).
[CrossRef]

W. Jia, D. Jia, T. Rodriguez, D. Evans, R. Meltzer, and W. Yen, “UV excitation and trapping centers in CaTiO3: Pr3+,” J. Lumin. 119–120, 13–18 (2006).
[CrossRef]

P. Boutinaud, E. Pinel, M. Dubois, A. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1-2), 69–80 (2005).
[CrossRef]

J. Mater. Chem. (1)

X. F. Yang, I. D. Williams, J. Chen, J. Wang, H. F. Xu, H. M. Konishi, Y. X. Pan, C. L. Liang, and M. M. Wu, “Perovskite hollow cubes: morphological control, three-dimensional twinning and intensely enhanced photoluminescence,” J. Mater. Chem. 18(30), 3543–3546 (2008).
[CrossRef]

J. Mater. Sci. (1)

S. Yin, D. Chen, W. Tang, and Y. Yuan, “Synthesis of CaTiO3: Pr, Al phosphors by sol-gel method and their luminescence properties,” J. Mater. Sci. 42(8), 2886–2890 (2007).
[CrossRef]

J. Phys. Chem. B (1)

T. Fujii, K. Kodaira, O. Kawauchi, N. Tanaka, H. Yamashita, and M. Anpo, “Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si- Al glasses prepared by the sol- gel method,” J. Phys. Chem. B 101(50), 10631–10637 (1997).
[CrossRef]

J. Phys. Chem. C (1)

L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian, and J. Lin, “Electrospinning synthesis and luminescence properties of one-dimensional Zn2SiO4: Mn2+ microfibers and microbelts,” J. Phys. Chem. C 112, 18882–18888 (2008).

J. Solid State Chem. (1)

X. Zhang, J. Zhang, X. Ren, and X. Wang, “The dependence of persistent phosphorescence on annealing temperatures in CaTiO3: Pr3+ nanoparticles prepared by a coprecipitation technique,” J. Solid State Chem. 181(3), 393–398 (2008).
[CrossRef]

J. Vac. Sci. Technol. B (1)

A. Vecht, D. Smith, S. Chadha, C. Gibbons, J. Koh, and D. Morton, “New electron excited light emitting materials,” J. Vac. Sci. Technol. B 12(2), 781–784 (1994).
[CrossRef]

Langmuir (1)

Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, and J. Lin, “Fabrication and luminescence properties of one-dimensional CaMoO(4): Ln(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process,” Langmuir 25(20), 12340–12348 (2009).
[CrossRef] [PubMed]

Mater. Lett. (1)

J. Tang, X. Yu, L. Yang, C. Zhou, and X. Peng, “Preparation and Al3+ enhanced photoluminescence properties of CaTiO3: Pr3+,” Mater. Lett. 60(3), 326–329 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Opt. Mater. (1)

T. Mazzo, M. Moreira, I. Pinaatti, F. Picon, E. Leite, I. Rosa, J. Varela, L. Perazolli, and E. Longo, “CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach,” Opt. Mater. (to be published).

Phys. Rev. (2)

C. Feldman, “Range of 1-10 kev electrons in solids,” Phys. Rev. 117(2), 455–459 (1960).
[CrossRef]

J. Last, “Infrared-absorption studies on barium titanate and related materials,” Phys. Rev. 105(6), 1740–1750 (1957).
[CrossRef]

Phys. Status Solidi (1)

P. Diallo, P. Boutinaud, R. Mahiou, and J. Cousseins, “Red luminescence in Pr3+-doped calcium titanates,” Phys. Status Solidi 160(1), 255–263 (1997) (a).
[CrossRef]

Polym. Degrad. Stabil. (1)

S. Azhari and M. Diab, “Thermal degradation and stability of poly (4-vinylpyridine) homopolymer and copolymers of 4-vinylpyridine with methyl acrylate,” Polym. Degrad. Stabil. 60(2-3), 253–256 (1998).
[CrossRef]

Science (1)

E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277(5334), 1971–1975 (1997).
[CrossRef]

Other (1)

A. Formhals, “Process and apparatus for preparing artificial threads,” (US Patents, 1934).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

X-ray diffraction patterns for CaTiO3:0.001 Pr3+ microfibers annealed at (a) 500, (b) 600, (c) 700, (d) 800 °C, respectively, as well as the JCPDS card 22-0153 of CaTiO3 for comparison.

Fig. 2
Fig. 2

FT-IR spectra of CaTiO3:0.001 Pr3+ and PVP fibers: (a) as-spun PVP fibers. (b) as-prepared precursor for CaTiO3:0.001 Pr3+ fibers, and (c) CaTiO3:0.001 Pr3+ fibers calcined at 800 °C.

Fig. 3
Fig. 3

TG-DTA curves of the as-spun precursor for CaTiO3:0.001 Pr3+ fibers.

Fig. 4
Fig. 4

SEM images for the as-formed precursor for CaTiO3:0.001 Pr3+ microfibers: image with low magnification (a) and high magnification (b). Those annealed at 800 °C: image with low magnification (c) and large magnification (d). And EDS of the microfibers annealed at 800 °C (e).

Fig. 5
Fig. 5

TEM (a) and HRTEM (b) images of CaTiO3:0.001 Pr3+ microfibers annealed at 800 °C.

Fig. 6
Fig. 6

PL excitation (a) and emission (b) spectra of the CaTiO3:0.001 Pr3+ microfibers annealed at 800 °C.

Fig. 7
Fig. 7

PL emission intensity and quantum efficiencies of Pr3+ as a function of its concentration (x) in Ca1-xTiO3:xPr3+ microfibers.

Fig. 8
Fig. 8

PL spectra of Ca1-xTiO3:xPr3+ microfibers with different Pr3+ ion concentrations (a) and the corresponding CIE chromaticity diagram (b).

Fig. 9
Fig. 9

Decay curve (a) for the luminescence of CaTiO3:0.001 Pr3+ microfibers and lifetime of Ca1-xTiO3:xPr3+ samples as a function of the concentration (x) of Pr3+.

Fig. 10
Fig. 10

The typical cathodoluminescence spectrum of CaTiO3:0.003 Pr3+ microfibers under an electron beam excitation (3 kV) (a), the cathodoluminescence intensity of CaTiO3:0.003 Pr3+ as a function of accelerating voltage (b) and filament current (c) and the corresponding CIE chromaticity diagram (3 kV, 100 mA) (d).

Metrics