Abstract

The atmospheric correction algorithm employed by the NASA Ocean Biology Processing Group requires an assumption of negligible water-leaving reflectance in the near-infrared region of the spectrum. For waters where this assumption is not valid, an optical model is used to estimate near-infrared water-leaving reflectance. We describe this optical model as implemented for the sixth reprocessing of the SeaWiFS mission-long time-series (September 2009). Application of the optical model resulted in significant reductions in the number of negative water-leaving reflectance retrievals in turbid and optically complex waters, and improved agreement with in situ chlorophyll-a observations. The incidence of negative water-leaving reflectance retrievals at 412 nm was reduced by 40%, while negative reflectance at 490 nm was nearly eliminated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [CrossRef] [PubMed]
  2. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [CrossRef]
  3. C. R. McClain, E. Ainsworth, R. Barnes, R. Eplee, Jr., F. Patt, W. Robinson, M. Wang, and S. W. Bailey, “SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1,” NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2000).
  4. A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
    [CrossRef]
  5. R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in Patt, F.S., et al., 2003: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing. NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).
  6. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
    [CrossRef]
  7. R. W. Gould, R. A. Arnone, and P. M. Martinolich, “Spectral dependence of the scattering coefficient in case 1 and case 2 waters,” Appl. Opt. 38(12), 2377–2383 (1999).
    [CrossRef]
  8. NIR, html, NIR Correction, http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R4/NIR.html
  9. A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
    [CrossRef] [PubMed]
  10. L. Kou, D. Labrie, and P. Chylek, “Refractive indices of water and ice in the 0.65-2.5 m spectral range,” Appl. Opt. 32(19), 3531–3540 (1993).
    [CrossRef] [PubMed]
  11. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [CrossRef]
  12. Z. Lee, R. A. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49(3), 369–381 (2010).
    [CrossRef] [PubMed]
  13. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [CrossRef]
  14. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
    [CrossRef]
  15. P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
    [CrossRef]
  16. S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on- orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
    [CrossRef]

2010 (1)

2009 (1)

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

2006 (1)

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on- orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

2005 (1)

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

2002 (1)

2000 (1)

1999 (1)

1998 (1)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

1997 (1)

1994 (1)

1993 (1)

1988 (2)

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Allali, K.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

Antoine, D.

Arnone, R. A.

Babin, M.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

Bailey, S. W.

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on- orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Chylek, P.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Claustre, H.

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Feldman, G. C.

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

Franz, B. A.

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

Fry, E. S.

Gentili, B.

Gordon, H. R.

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Gould, R. W.

Harding, L. W.

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

Hu, C.

Kou, L.

Labrie, D.

Lee, Z.

Lubac, B.

Maritorena, S.

Martinolich, P. M.

McClain, C. R.

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

Morel, A.

A. Morel, D. Antoine, and B. Gentili, “Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function,” Appl. Opt. 41(30), 6289–6306 (2002).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

Pope, R. M.

Robinson, W.

Siegel, D. A.

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

Wang, M.

Werdell, P. J.

Z. Lee, R. A. Arnone, C. Hu, P. J. Werdell, and B. Lubac, “Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm,” Appl. Opt. 49(3), 369–381 (2010).
[CrossRef] [PubMed]

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on- orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Appl. Opt. (7)

J. Geophys. Res. (3)

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with the chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models,” J. Geophys. Res. 103(C13), 31033–31044 (1998).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988).
[CrossRef]

A. Morel, “Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters),” J. Geophys. Res. 93(C9), 10749–10768 (1988).
[CrossRef]

Remote Sens. Environ. (3)

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS- Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009).
[CrossRef]

S. W. Bailey and P. J. Werdell, “A multi-sensor approach for the on- orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1-2), 12–23 (2006).
[CrossRef]

Other (3)

NIR, html, NIR Correction, http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R4/NIR.html

R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” in Patt, F.S., et al., 2003: Algorithm Updates for the Fourth SeaWiFS Data Reprocessing. NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2003).

C. R. McClain, E. Ainsworth, R. Barnes, R. Eplee, Jr., F. Patt, W. Robinson, M. Wang, and S. W. Bailey, “SeaWiFS Postlaunch Calibration and Validation Analyses, Part 1,” NASA Tech. Memo. 206892, National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Modeled vs. measured bb(555 nm) from the NOMAD data set. Gray symbols are the power law formulation of [12]. Red symbols are the linear function of [7].

Fig. 2
Fig. 2

Particulate and dissolved absorption at 670 nm vs. Ca derived from the NOMAD data set.

Fig. 3
Fig. 3

Global map of likely application of the NIR correction. This was created from the SeaWiFS mission cumulative climatology. Black indicates land; grey Ca < = 0.3 mg m3; white Ca > 0.3 mg m3. The white area indicates where the NIR correction is likely to be applied.

Fig. 4
Fig. 4

Histograms of in situ and satellite derived Ca for the Lower, Middle and Upper Chesapeake Bay

Tables (3)

Tables Icon

Table 1 Statistics of Modeled versus Measured Backscattering at 443 nm

Tables Icon

Table 2 Percent Negative Remote Sensing Reflectance

Tables Icon

Table 3 Validation Statistics for SeaWiFS Rrs(λ)

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R r s ( λ ) = G ( λ ) X ( λ )
X ( λ ) = b b ( λ ) a ( λ ) + b b ( λ )
b b ( λ ) = b b ( λ 0 ) Y ,
b b ( λ ) = b b w ( λ ) + b b p ( λ 0 ) Y ,
Y = [ λ 0 λ ] η .
Y = ( α λ + β ) / ( α λ 0 + β ) ,
η = 2 .0 *  [ 1 . - 1 .2 * e ( -0 .9* R rs ( 443 ) / R rs ( 555 ) ) ] .
a ( 670 ) = e ( ln ( C a ) 0.9389 3.7589 ) + a w ( 670 )

Metrics