Abstract

A hierarchical hologram works in both optical far-fields and near-fields, the former being associated with conventional holographic images, and the latter being associated with the optical intensity distribution based on a nanometric structure that is accessible only via optical near-fields. We propose embedding a nanophotonic code, which is retrievable via optical near-field interactions involving nanometric structures, within an embossed hologram. Due to the one-dimensional grid structure of the hologram, evident polarization dependence appears in retrieving the code. Here we describe the basic concepts, numerical simulations, and experimental results in fabrication of a prototype hierarchical hologram and describe its optical characterization.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Van Renesse, ed., Optical document scanning, (Altech House Optoelectronics Library, 1998).
  2. S. P. McGrew, "Hologram counterfeiting: problems and solutions," Proc. SPIE, Optical Security and Anticounterfeiting Systems 1210, 66-76 (1990).
  3. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
    [CrossRef] [PubMed]
  4. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, ed., Principles of Nanophotonics, (Taylor and Francis, Boca Raton, 2008).
    [CrossRef]
  5. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
    [CrossRef]
  6. M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, "Hierarchy in optical near-fields and its application to memory retrieval," Opt. Express 13, 9265-9271 (2005).
    [CrossRef] [PubMed]
  7. M. Naruse, H. Hori, K. Kobayashi, M. Ishikawa, K. Leibnitz, M. Murata, N. Tate, and M. Ohtsu, "Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime," J. Opt. Soc. Am. B 26, 1772-1779 (2009).
    [CrossRef]
  8. N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

2009

M. Naruse, H. Hori, K. Kobayashi, M. Ishikawa, K. Leibnitz, M. Murata, N. Tate, and M. Ohtsu, "Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime," J. Opt. Soc. Am. B 26, 1772-1779 (2009).
[CrossRef]

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

2008

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
[CrossRef] [PubMed]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

2005

Hirose, N.

Hori, H.

Ishikawa, M.

Kawazoe, T.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

Kobayashi, K.

Leibnitz, K.

Murata, M.

Naruse, M.

M. Naruse, H. Hori, K. Kobayashi, M. Ishikawa, K. Leibnitz, M. Murata, N. Tate, and M. Ohtsu, "Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime," J. Opt. Soc. Am. B 26, 1772-1779 (2009).
[CrossRef]

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, "Hierarchy in optical near-fields and its application to memory retrieval," Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

Nomura, W.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
[CrossRef] [PubMed]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, "Hierarchy in optical near-fields and its application to memory retrieval," Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

Ohkoshi, S.-i.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

Ohtsu, M.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

M. Naruse, H. Hori, K. Kobayashi, M. Ishikawa, K. Leibnitz, M. Murata, N. Tate, and M. Ohtsu, "Information theoretical analysis of hierarchical nano-optical systems in the subwavelength regime," J. Opt. Soc. Am. B 26, 1772-1779 (2009).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
[CrossRef] [PubMed]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, "Hierarchy in optical near-fields and its application to memory retrieval," Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

Takeda, K.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

Tate, N.

Tokoro, H.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

Yatsui, T.

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, "Hierarchical Hologram based on Optical Near- and Far-Field Responses," Opt. Express 16, 607-612 (2008).
[CrossRef] [PubMed]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

M. Naruse, T. Yatsui, W. Nomura, N. Hirose, and M. Ohtsu, "Hierarchy in optical near-fields and its application to memory retrieval," Opt. Express 13, 9265-9271 (2005).
[CrossRef] [PubMed]

Appl. Phys. B

N. Tate, H. Tokoro, K. Takeda, W. Nomura, T. Yatsui, T. Kawazoe, M. Naruse, S.-i. Ohkoshi and M. Ohtsu, "Transcription of optical near-fields by photoinduced structural change in single crystal metal complexes for parallel nanophotonic processing," Appl. Phys. B, in print (2009).

IEEE J. Sel. Top. Quantum Electron.

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, "Single-photon emitter using excitation energy transfer between quantum dots," IEEE J. Sel. Top. Quantum Electron. 14, 1404-1417 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Other

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse, ed., Principles of Nanophotonics, (Taylor and Francis, Boca Raton, 2008).
[CrossRef]

R. L. Van Renesse, ed., Optical document scanning, (Altech House Optoelectronics Library, 1998).

S. P. McGrew, "Hologram counterfeiting: problems and solutions," Proc. SPIE, Optical Security and Anticounterfeiting Systems 1210, 66-76 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Fabrication of a nanometric structure as a nanophotonic code within the embossed structure of Virtuagram®. (b) Schematic diagram of fabricated sample device, and (c) SEM images of various designed patterns serving as nanophotonic codes.

Fig. 2.
Fig. 2.

(a) Calculation model of embedded nanophotonic code with environmental structures and calculated intensity distribution of electric field produced by (b) x-polarized input light and (c) y-polarized input light.

Fig. 3.
Fig. 3.

(a) Calculation model of isolated nanophotonic code and calculated intensity distribution of electric field produced by (b) x-polarized input light and (c) y-polarized input light.

Fig. 4.
Fig. 4.

(a) Schematic diagram explaining definition of average electric field intensity 〈Isignal and 〈Ienv, and (b) their graphical representations in each calculation model. Evident polarization dependency was exhibited in the case of nanometric code embedded in environmental structures. (c) The ratio of 〈Isignal with x-polarized input to that with y-polarized input light for the embedded and isolated structures. (d) Numerical recognizability R num in two types of models with y-polarized input light. The result indicates that the recognizability of the nanophotonic code was greatly enhanced by embedding it in the environmental structure.

Fig. 5.
Fig. 5.

(a) Schematic diagram of the experimental setup for retrieving a nanophotonic code, and (b) observed optical image as basic retrieval results.

Fig. 6.
Fig. 6.

Observed NOM images of optical intensity distributions of retrieved nanophotonic code embedded in environmental structures with (a) a standard polarization and (b) 60 deg-rotated polarization, and (c) NOM images observed by irradiating light with various polarizations.

Fig. 7.
Fig. 7.

Observed NOM images of optical intensity distributions of retrieved isolated nanophotonic code with (a) a standard polarization and (b) 60 deg-rotated polarization, and (c) NOM images observed by irradiating light with various polarizations.

Fig. 8.
Fig. 8.

(a) Schematic diagram explaining definition of I(x) and 〈I(x)〉env, and (b) their plotted results. (c) Calculated experimental recognizability R exp of embedded nanophotonic code and (d) that of isolated nanophotonic code. Evident recognizability and polarization dependency were exhibited.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R num = I signal I env × I signal
R exp = x I ( x ) I ( x ) env .

Metrics