Abstract

A method of eliminating pixelization effect from en face optical coherence tomography (OCT) image when a fiber bundle is used as an OCT imaging probe is presented. We have demonstrated that applying a histogram equalization process before performing a weighted-averaged Gaussian smoothing filter to the original lower gray level intensity based image not only removes the structural artifact of the bundle but also enhances the image quality with minimum blurring of object’s image features. The measured contrast-to-noise ratio (CNR) for an image of the US Air Force test target was 14.7dB (4.9dB), after (before) image processing. In addition, by performing the spatial frequency analysis based on two-dimensional discrete Fourier transform (2-D DFT), we were able to observe that the periodic intensity peaks induced by the regularly arrayed structure of the fiber bundle can be efficiently suppressed by 41.0dB for the first nearby side lobe as well as to obtain the precise physical spacing information of the fiber grid. The proposed combined method can also be used as a straight forward image processing tool for any imaging system utilizing fiber bundle as a high-resolution imager.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
    [CrossRef]
  2. A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
    [CrossRef]
  3. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
    [CrossRef]
  4. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  5. D. M. Chiarulli, S. P. Levitan, P. Derr, R. Hofmann, B. Greiner, and M. Robinson, “Demonstration of a multichannel optical interconnection by use of imaging fiber bundles butt coupled to optoelectronic circuits,” Appl. Opt. 39(5), 698–703 (2000).
    [CrossRef]
  6. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  7. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, “Fourier-domain angle-resolved low coherence interferometry through an endoscopic fiber bundle for light-scattering spectroscopy,” Opt. Lett. 31(6), 772–774 (2006).
    [CrossRef] [PubMed]
  8. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [CrossRef] [PubMed]
  9. W. Göbel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
    [CrossRef] [PubMed]
  10. K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
    [CrossRef] [PubMed]
  11. B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
    [CrossRef] [PubMed]
  12. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
    [CrossRef]
  13. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
    [CrossRef] [PubMed]
  14. S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
    [CrossRef] [PubMed]
  15. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  16. J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
    [CrossRef] [PubMed]
  17. V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
    [CrossRef]
  18. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
    [CrossRef] [PubMed]
  19. K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
    [CrossRef] [PubMed]
  20. J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47(25), 4560–4568 (2008).
    [CrossRef] [PubMed]
  21. J. Sun, Q. Huang, and J. A. Gilbert, “Comparing cross talk in doped scintillating-fiber bundles,” Appl. Opt. 34(9), 1536–1539 (1995).
    [CrossRef] [PubMed]
  22. T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
    [CrossRef] [PubMed]
  23. H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
    [CrossRef]
  24. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express 14(19), 8675–8684 (2006).
    [CrossRef] [PubMed]
  25. J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
    [CrossRef] [PubMed]
  26. W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
    [CrossRef]
  27. C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
    [CrossRef] [PubMed]
  28. M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
    [CrossRef] [PubMed]
  29. S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
    [CrossRef]
  30. M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
    [CrossRef]
  31. P. A. Dellenback, J. Macharivilakathu, and S. R. Pierce, “Contrast-enhancement techniques for particle-image velocimetry,” Appl. Opt. 39(32), 5978–5990 (2000).
    [CrossRef]
  32. T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007).
    [CrossRef]
  33. P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
    [CrossRef] [PubMed]
  34. Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
    [CrossRef]
  35. Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
    [CrossRef]
  36. K. Yu, L. Ji, L. Wang, and P. Xue, “How to optimize OCT image,” Opt. Express 9(1), 24–35 (2001).
    [CrossRef] [PubMed]
  37. J. S. Lim, Two-Dimensional Signal and Image Processing, (1990, Prentice Hall, Englewood, NJ.)
  38. R. C. Gonzalez, and R. E. Woods, Digital Image Processing, second ed.,( 2002, Prentice Hall, NJ.)
  39. J. R. Hook, and H. E. Hall, Solid State Physics, 2nd Ed. (1991, John Wiley & Sons Ltd., New York, NY.)
  40. J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
    [CrossRef] [PubMed]
  41. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [CrossRef]
  42. R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005).
    [CrossRef] [PubMed]
  43. C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
    [CrossRef]
  44. H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007).
    [CrossRef] [PubMed]
  45. S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
    [CrossRef]

2009 (5)

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[CrossRef]

2008 (7)

X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express 16(26), 21598–21607 (2008).
[CrossRef] [PubMed]

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

J. A. Udovich, N. D. Kirkpatrick, A. Kano, A. Tanbakuchi, U. Utzinger, and A. F. Gmitro, “Spectral background and transmission characteristics of fiber optic imaging bundles,” Appl. Opt. 47(25), 4560–4568 (2008).
[CrossRef] [PubMed]

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
[CrossRef]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

2007 (7)

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[CrossRef]

T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007).
[CrossRef]

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007).
[CrossRef] [PubMed]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

K. L. Reichenbach and C. Xu, “Numerical analysis of light propagation in image fibers or coherent fiber bundles,” Opt. Express 15(5), 2151–2165 (2007).
[CrossRef] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[CrossRef]

2006 (3)

2005 (6)

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

R. Cicchi, D. Sampson, D. Massi, and F. Pavone, “Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents,” Opt. Express 13(7), 2337–2344 (2005).
[CrossRef] [PubMed]

T. Xie, D. Mukai, S. Guo, M. Brenner, and Z. Chen, “Fiber-optic-bundle-based optical coherence tomography,” Opt. Lett. 30(14), 1803–1805 (2005).
[CrossRef] [PubMed]

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

2004 (1)

2002 (3)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

2001 (2)

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

K. Yu, L. Ji, L. Wang, and P. Xue, “How to optimize OCT image,” Opt. Express 9(1), 24–35 (2001).
[CrossRef] [PubMed]

2000 (4)

1999 (2)

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

1995 (1)

1993 (1)

Alaruria, S.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Aziz, D.

Baldelli, P.

P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
[CrossRef] [PubMed]

Barretto, R. P. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Bilenca, A.

Bonsetta, T.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Bornhop, D. J.

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

Bouma, B. E.

Boyer, J. D.

Brenner, M.

Brewer, M. A.

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

Brewingtona, A.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Brezinski, M. E.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

Burns, L. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Cano, A. E.

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Chalut, K. J.

Chen, X.

Chen, Z.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Chiarulli, D. M.

Choi, E.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Cicchi, R.

Cocker, E. D.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Collier, T.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Dellenback, P. A.

Delpy, D. T.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Den-Amotz, D.

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

Derr, P.

Descour, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Desjardins, A. E.

Dickens, M. M.

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

Dlugan, A. L. P.

Dubaj, V.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Egan, G.

P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
[CrossRef] [PubMed]

Elter, M.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Engelbrecht, C. J.

Fernández, D. C.

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007).
[CrossRef] [PubMed]

Fernández, P. R.

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Flusberg, B. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Follen, M.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Ford, H. D.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[CrossRef]

Fry, M. E.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Garay-Sevilla, M. E.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
[CrossRef]

Gardel, A.

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Gerhäuser, H.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Gift, A. D.

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

Gilbert, J. A.

Gmitro, A. F.

Göbel, W.

Greiner, B.

Guo, S.

Haber, K. S.

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

Han, J.-H.

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

Harris, M.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Hebden, J. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Helmchen, F.

Hillman, E. M. C.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Hofmann, R.

Hong, I. K.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Houlne, M. P.

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

Huang, Q.

Iftimia, N.

Ishitani, T.

T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007).
[CrossRef]

Ji, L.

Johnston, R. S.

Jung, J. C.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Kang, J. U.

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

Kano, A.

Kerr, J. N.

Kirkpatrick, N. D.

Ko, T. H.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Lane, P. M.

Lázaro, J. L.

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Lee, B. H.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Lee, J.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Levitan, S. P.

Liang, C.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Liang, Y.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Liu, X.

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Luna, C. A.

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Ma, J.

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

Macaulay, C. E.

Macharivilakathu, J.

Macria, F.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Massi, D.

Mazzolini, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

McClain, B. L.

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

McLennan, G.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Meallet-Renault, R.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Mitra, S.

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

Montague, P.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Mu, G.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Mukai, D.

Mukamel, E. A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Münzenmayer, C.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Murukeshan, V. M.

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Na, J.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Nimmerjahn, A.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

W. Göbel, J. N. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
[CrossRef] [PubMed]

Oh, W. Y.

Ong, L. S.

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Oron, D.

Ozcan, A.

Paes, S.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Pansu, R. B.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Pavone, F.

Phelan, N.

P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
[CrossRef] [PubMed]

Pierce, S. R.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Pyhtila, J. W.

Reichenbach, K. L.

Reinhardt, J.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Ren, Q.

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

Richards-Kortum, R.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
[CrossRef]

Robinson, M.

Rodríguez, J. J.

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

Rouse, A. R.

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

Rupp, S.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Ryu, S. Y.

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Salinas, H. M.

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007).
[CrossRef] [PubMed]

Sampson, D.

Sanchez-Marin, F. J.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
[CrossRef]

Sandeau, N.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Sato, M.

T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007).
[CrossRef]

Schmidt, F. E. W.

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Schnitzer, M. J.

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Seah, L. K.

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Seibel, E. J.

Silberberg, Y.

Singh, A.

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Smitha, D.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Song, C. G.

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

Spitz, J.-A.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Srivastava, S.

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

Sujatha, N.

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Sun, J.

Sung, K.-B.

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

Suter, M.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Taft, P.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Takano, M.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Tal, E.

Tanbakuchi, A.

Tatam, R. P.

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[CrossRef]

Tearney, G. J.

Tong, Z.

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Udovich, J. A.

Utzinger, U.

Vachon, J.-J.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Villaseñor-Mora, C.

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
[CrossRef]

Wang, L.

Wang, W.

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

Wax, A.

Wildman, D.

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Winter, C.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Wittenberg, T.

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

Wood, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

Xie, T.

Xu, C.

Xue, P.

Yasukuni, R.

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

Yelin, R.

Yu, K.

Zabner, J.

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

Zhang, K.

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

Zhu, X.

Y. Liu, Y. Liang, G. Mu, and X. Zhu, “Deconvolution methods for image deblurring in optical coherence tomography,” J. Opt. Soc. Am. A 26(1), 72–77 (2009).
[CrossRef]

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Appl. Opt. (4)

Electron. Lett. (1)

J.-H. Han, X. Liu, C. G. Song, and J. U. Kang, “Common path optical coherence tomography with fibre bundle probe,” Electron. Lett. 45(22), 1110–1112 (2009).
[CrossRef] [PubMed]

Eur. Radiol. (1)

P. Baldelli, N. Phelan, and G. Egan, “A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors,” Eur. Radiol. 19(9), 2275–2285 (2009).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

C. Winter, S. Rupp, M. Elter, C. Münzenmayer, H. Gerhäuser, and T. Wittenberg, “Automatic adaptive enhancement for images obtained with fiberscopic endoscopes,” IEEE Trans. Biomed. Eng. 53(10), 2035–2046 (2006).
[CrossRef] [PubMed]

K.-B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Biomed. Eng. 49(10), 1168–1172 (2002).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

H. M. Salinas and D. C. Fernández, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Trans. Med. Imaging 26(6), 761–771 (2007).
[CrossRef] [PubMed]

Infrared Phys. Technol. (1)

C. Villaseñor-Mora, F. J. Sanchez-Marin, and M. E. Garay-Sevilla, “Contrast enhancement of mid and far infrared images of subcutaneous veins,” Infrared Phys. Technol. 51(3), 221–228 (2008).
[CrossRef]

J. Biomed. Opt. (2)

S. Srivastava, J. J. Rodríguez, A. R. Rouse, M. A. Brewer, and A. F. Gmitro, “Computer-aided identification of ovarian cancer in confocal microendoscope images,” J. Biomed. Opt. 13(2), 024021 (2008).
[CrossRef] [PubMed]

M. Suter, J. Reinhardt, P. Montague, P. Taft, J. Lee, J. Zabner, and G. McLennan, “Bronchoscopic imaging of pulmonary mucosal vasculature responses to inflammatory mediators,” J. Biomed. Opt. 10(3), 034013 (2005).
[CrossRef] [PubMed]

J. Electron Microsc. (Tokyo) (1)

T. Ishitani and M. Sato, “Evaluation of both image resolution and contrast-to-noise ratio in scanning electron microscopy,” J. Electron Microsc. (Tokyo) 56(4), 145–151 (2007).
[CrossRef]

J. Microsc. (2)

J.-A. Spitz, R. Yasukuni, N. Sandeau, M. Takano, J.-J. Vachon, R. Meallet-Renault, and R. B. Pansu, “Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy,” J. Microsc. 229(1), 104–114 (2008).
[CrossRef] [PubMed]

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc. 207(2), 108–117 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Raman Spectrosc. (1)

A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, and D. Den-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30(9), 757–765 (1999).
[CrossRef]

Meas. Sci. Technol. (1)

H. D. Ford and R. P. Tatam, “Fibre imaging bundles for full-field optical coherence tomography,” Meas. Sci. Technol. 18(9), 2949–2957 (2007).
[CrossRef]

Nat. Methods (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, and M. J. Schnitzer, “High-speed, miniaturized fluorescence microscopy in freely moving mice,” Nat. Methods 5(11), 935–938 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Liu, Y. Liang, Z. Tong, X. Zhu, and G. Mu, “Contrast enhancement of optical coherence tomography images using least squares fitting and histogram matching,” Opt. Commun. 279(1), 23–26 (2007).
[CrossRef]

Opt. Eng. (2)

W. Wang, K. Zhang, Q. Ren, and J. U. Kang, “Comparison of different focusing systems for common-path optical coherence tomography with fiber-optic bundle as endoscopic probe,” Opt. Eng. 48(10), 103001 (2009).
[CrossRef]

M. M. Dickens, M. P. Houlne, S. Mitra, and D. J. Bornhop, “Method for depixelating micro-endoscopic images,” Opt. Eng. 38(11), 1836–1842 (1999).
[CrossRef]

Opt. Express (7)

Opt. Laser Technol. (1)

V. M. Murukeshan, N. Sujatha, L. S. Ong, A. Singh, and L. K. Seah, “Effect of image fiber on the speckle fringe pattern in image fiber-guided DSPI endoscopy,” Opt. Laser Technol. 39(3), 527–531 (2007).
[CrossRef]

Opt. Lasers Eng. (1)

S. Alaruria, T. Bonsetta, D. Smitha, F. Macria, A. Brewingtona, and D. Wildman, “An endoscopic imaging system for turbine engine pressure sensitive paint measurements,” Opt. Lasers Eng. 36(3), 277–287 (2001).
[CrossRef]

Opt. Lett. (5)

Opt. Quantum Electron. (1)

S. Paes, S. Y. Ryu, J. Na, E. Choi, B. H. Lee, and I. K. Hong, “Advantages of adaptive speckle filtering prior to application of iterative deconvolution methods for optical coherent tomography imaging,” Opt. Quantum Electron. 37(13-15), 1225–1238 (2005).
[CrossRef]

Phys. Med. Biol. (1)

J. Rogowska and M. E. Brezinski, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images,” Phys. Med. Biol. 47(4), 641–655 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256–265 (2000).
[CrossRef]

Sensors (1)

J. L. Lázaro, P. R. Fernández, A. Gardel, A. E. Cano, and C. A. Luna, “Sensor calibration based on incoherent optical fiber bundles (IOFB) used for remote image transmission,” Sensors 9(10), 8215–8229 (2009).
[CrossRef]

Other (3)

J. S. Lim, Two-Dimensional Signal and Image Processing, (1990, Prentice Hall, Englewood, NJ.)

R. C. Gonzalez, and R. E. Woods, Digital Image Processing, second ed.,( 2002, Prentice Hall, NJ.)

J. R. Hook, and H. E. Hall, Solid State Physics, 2nd Ed. (1991, John Wiley & Sons Ltd., New York, NY.)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

OCT setup with a fiber bundle probe: (a) Fourier domain common path optical coherence tomography; (b) surface image of fiber bundle taken by scanning electron microscope (SEM). (Scale bar: 100µm)

Fig. 2
Fig. 2

Response of a Gaussian smoothing filter: (a) 2-D response (h) with colored representation; (b) 3-D response in a mesh form with corresponding weights.

Fig. 3
Fig. 3

Obtained original unprocessed OCT en face image of US Air Force target: (a) original image with fiber pixelation effect; (b) Magnitude of 2-D discrete Fourier transform of the image.

Fig. 4
Fig. 4

Results of histogram equalization method: (a) histogram distribution (probability) of the raw image with gray scale level (inset: corresponding transfer function of the histogram equalization); (b) USAF chart image after histogram equalization.

Fig. 5
Fig. 5

Gaussian smoothing filtered result with a pre histogram equalized image: (a) USAF chart image with combined histogram equalization and Gaussian weighted filter; (b) histogram comparison between before (blue solid line) and after (red dotted line) image processing.

Fig. 6
Fig. 6

Image result after applying Gaussian smoothing filter only: (a) chart image after Gaussian filtering; (b) corresponding histogram of the processed image (original image: blue solid line; processed image: black dotted line). Inset figure: spatial frequency information (original image: blue solid line; processed image: green dotted line).

Fig. 7
Fig. 7

Comparison in characteristics of the image: (a) magnitude of Fourier transforms (blue solid line for original image; black dashed line for histogram equalized image; red dotted line for Gaussian smoothing filtered image with pre-histogram equalization); (b) image contrast and CNR (left y-axis for contrast with black square; right y-axis for CNR with blue circle).

Fig. 8
Fig. 8

Comparison in image qualities of Gaussian filtered image with various filter parameters (filter size, m, and filter width, σ) post the histogram equalization: (a) image contrast; (b) image CNR.

Fig. 9
Fig. 9

Corresponding processed image results by various filter parameters in Fig. 8: (a) σ = 3 , m = 11 ; (b) σ = 3 , m = 15 ; (c) σ = 3 , m = 19 ; (d) σ = 3 , m = 23 ; (e) σ = 3 , m = 27 ; (f) σ = 4 , m = 11 ; (g) σ = 4 , m = 15 ; (h) σ = 4 , m = 19 ; (i) σ = 4 , m = 23 ; (j) σ = 4 , m = 27 ; (k) σ = 5 , m = 11 ; (l) σ = 5 , m = 15 ; (m) σ = 5 , m = 19 ; (n) σ = 5 , m = 23 ; (o) σ = 5 , m = 27 ; (p) σ = 6 , m = 11 ; (q) σ = 6 , m = 15 ; (r) σ = 6 , m = 19 ; (s) σ = 6 , m = 23 ; (t) σ = 6 , m = 27 ; (u) σ = 7 , m = 11 ; (v) σ = 7 , m = 15 ; (w) σ = 7 , m = 19 ; (x) σ = 7 , m = 23 ; (y) σ = 7 , m = 27 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s k = T ( k ) = j = 0 k n j n , k = 0 , 1 , 2 , ... , L 1
s k ' = s k ( L max L min ) + L min
g ( m , n ) = h ( m , n ) f ( m , n )
h ( m , n ) = h g ( m , n ) m n h g ( m , n )
C = μ o μ b or C [ d B ] = 10 log 10 ( μ o μ b )
C N R = μ o μ b σ n or C N R [ d B ] = 10 log 10 ( μ o μ b σ n )
M S E = m n | I F ( m , n ) I R ( m , n ) | 2 m n | I R ( m , n ) | 2

Metrics