Abstract

We present a rigorous theoretical analysis of the two-wire waveguide. Obtaining the attenuation constant in terms of the dimensions of the waveguide analytically, we show that the absorption coefficient can be less than 0.01 cm−1, with the appropriate values of the dimensions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
    [CrossRef]
  2. C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [CrossRef]
  3. R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
    [CrossRef]
  4. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
    [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [CrossRef]
  6. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  8. M. K. Mbonye, V. Astley, W. L. Chan, J. A. Deibel, and M. Mittleman, “A terahertz dual wire waveguide,” in Lasers and Electro-Optics Conference, Optical Society of America, 2007, paper CThLL1.
  9. M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
    [CrossRef]
  10. J. D. Jackson, Classical electrodynamics, Third Edition, (John Wiley & Sons, 1999), pp. 352–356.
  11. E. B. Saff, and A. D. Snider, Fundamentals of complex analysis: with applications to engineering and science, Third Edition, (Pearson Education, 2003).

2009 (1)

M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[CrossRef]

2006 (1)

2004 (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2001 (1)

2000 (3)

C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

1991 (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

Chen, H. W.

Chen, L. J.

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

Gallot, C. G.

Grischkowsky, D.

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef]

C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

Jamison, S. P.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

Kao, T. F.

Lu, J. Y.

Mbonye, M. K.

M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[CrossRef]

McGowan, R. W.

C. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

Mendis, R.

M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

Mittleman, D. M.

M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

Sun, C. K.

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987–1989 (2000).
[CrossRef]

M. K. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95(23), 233506 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahetz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[CrossRef]

J. Appl. Phys. (1)

R. Mendis and D. Grischkowsky, “Plastic ribbon thz waveguides,” J. Appl. Phys. 88(7), 4449–4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (3)

M. K. Mbonye, V. Astley, W. L. Chan, J. A. Deibel, and M. Mittleman, “A terahertz dual wire waveguide,” in Lasers and Electro-Optics Conference, Optical Society of America, 2007, paper CThLL1.

J. D. Jackson, Classical electrodynamics, Third Edition, (John Wiley & Sons, 1999), pp. 352–356.

E. B. Saff, and A. D. Snider, Fundamentals of complex analysis: with applications to engineering and science, Third Edition, (Pearson Education, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conformal mapping of the cross section of two-wire waveguide

Fig. 2
Fig. 2

Electric field distribution

Fig. 3
Fig. 3

Electric field from the theory (solid line) and the simulation (dashed line)

Fig. 4
Fig. 4

Electric field distribution for different values of D

Fig. 5
Fig. 5

Attenuation constant for different values of D and R

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

ρ s = n ^ D
J s = n ^ × H
H c = H | | e ξ / δ e i ξ / δ ,
E c μ c ω 2 σ ( 1 i ) ( n × H | | ) e ξ / δ e i ξ / δ ,
δ = 2 ω μ σ ,
d P l o s s d A = μ c ω δ 4 | H | | | 2 ,
f 1 ( z ) = R z + D ,
f 2 ( z ) = z C 1 C 2 z ,
C 1 , C 2 = D 2 R ( D 2 R ) 2 1 .
V = V 0 ln ( b / | z | ) ln ( b / a ) ,
E = V .
E x H y = η ,
E y H x = η ,
P l o s s = μ c ω δ 4 S | H | | | 2 d s ,
P 0 = 1 2 { S ( E × H ) d s }
α = P l 2 P 0 = P l o s s / L 2 P 0 ,

Metrics