Abstract

We describe the production of a high speed, and high stroke, phase modulator using a polymer network liquid crystal device. We present data showing fast response times (sub millisecond) in a device which can operate at visible wavelengths with a simple electrical addressing scheme.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Langlois, C. D. Saunter, C. N. Dunlop, R. Myers, and G. D. Love, “Multiconjugate adaptive optics: laboratory experience,” Opt. Express 12(8), 1689–1699 (2004).
    [CrossRef] [PubMed]
  2. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and Control of a Multielement Dual-Frequency Liquid-Crystal Device for High-Speed Adaptive Optical Wave-Front Correction,” Appl. Opt. 40(15), 2345–2355 (2001).
    [CrossRef] [PubMed]
  3. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
    [CrossRef]
  4. M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003).
    [CrossRef]
  5. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45(5), 888–896 (2006).
    [CrossRef] [PubMed]
  6. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, and G. D. Love, “Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells,” Opt. Express 14(10), 4525–4537 (2006).
    [CrossRef] [PubMed]
  7. P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984).
    [CrossRef]
  8. S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989).
    [CrossRef]
  9. C. R. Stein, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Displays,” Appl. Phys. Lett. 19(9), 343 (1971).
    [CrossRef]
  10. H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
    [CrossRef]
  11. H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
    [CrossRef]
  12. V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).
  13. A. K. Kirby and G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express 12(7), 1470–1475 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1470 .
    [CrossRef] [PubMed]
  14. A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
    [CrossRef]
  15. Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005).
    [CrossRef] [PubMed]
  16. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004).
    [CrossRef]
  17. J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
    [CrossRef]
  18. B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).
  19. Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6384 (2004).
    [CrossRef]
  20. O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
    [CrossRef]

2009 (1)

H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
[CrossRef]

2006 (2)

2005 (3)

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (1)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003).
[CrossRef]

2001 (1)

2000 (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

1993 (1)

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

1992 (1)

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

1989 (2)

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989).
[CrossRef]

1984 (1)

P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984).
[CrossRef]

1974 (1)

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
[CrossRef]

1971 (1)

C. R. Stein, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Displays,” Appl. Phys. Lett. 19(9), 343 (1971).
[CrossRef]

Aphonin, O. A.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

Belopukhov, V. N.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Beran, K. R.

P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984).
[CrossRef]

Bos, P. J.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984).
[CrossRef]

Browne, S.

Bücher, H. K.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
[CrossRef]

Chien, L. C.

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

Dayton, D.

Dorezyuk, V. A.

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).

Dunlop, C. N.

Fan, Y. H.

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004).
[CrossRef]

Glushchenko, A.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

Gonglewski, J.

Haist, T.

Hands, P. J. W.

Jákli, A.

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

Kim, D. R.

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

Kirby, A. K.

Klingbiel, R. T.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
[CrossRef]

Kohler, C.

Langlois, M.

Lin, C. L.

H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
[CrossRef]

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004).
[CrossRef]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6384 (2004).
[CrossRef]

Loktev, M. Y.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Love, G. D.

Lu, Y. Q.

MacManamon, P. F.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

Myers, R.

Naumov, A. F.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).

Osten, W.

Panina, Y. V.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

Pravdin, A. B.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

Reicherter, M.

Ren, H.

Restaino, S.

Reznikov, Y.

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

Sato, S.

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003).
[CrossRef]

Saunter, C. D.

Saupe, A.

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

Shmal’gauzen, V. I.

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).

Stein, C. R.

C. R. Stein, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Displays,” Appl. Phys. Lett. 19(9), 343 (1971).
[CrossRef]

Tatarkova, S. A.

Tiziani, H.

VanMeter, J. P.

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
[CrossRef]

Vdovin, G. V.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Vladimirov, F. L.

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Wang, B.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

West, J. L.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

Wu, C. S.

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989).
[CrossRef]

Wu, J. R.

Wu, S. T.

H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
[CrossRef]

Y. H. Fan, H. Ren, and S. T. Wu, “Electrically switchable Fresnel lens using a polymer-separated composite film,” Opt. Express 13(11), 4141–4147 (2005).
[CrossRef] [PubMed]

Y. H. Wu, Y. H. Lin, Y. Q. Lu, H. Ren, Y. H. Fan, J. R. Wu, and S. T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express 12(25), 6382–6384 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004).
[CrossRef]

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989).
[CrossRef]

Wu, Y. H.

Xianyu, H. Q.

H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
[CrossRef]

Yakovlev, D. A.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

Ye, M.

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003).
[CrossRef]

Zhang, G.

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

Zwick, S.

Appl. Opt. (2)

Appl. Phys. (Berl.) (1)

B. Wang, G. Zhang, A. Glushchenko, J. L. West, P. J. Bos, and P. F. MacManamon, “Stressed liquid crystal optical phased array for fast tip-tilt awavefront correction,” Appl. Phys. (Berl.) 44, 7754 (2005).

Appl. Phys. Lett. (4)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233 (2004).
[CrossRef]

J. L. West, G. Zhang, A. Glushchenko, and Y. Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86(3), 031111 (2005).
[CrossRef]

C. R. Stein, “A Two-Frequency Coincidence Addressing Scheme for Nematic-Liquid-Crystal Displays,” Appl. Phys. Lett. 19(9), 343 (1971).
[CrossRef]

H. K. Bücher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25(4), 186 (1974).
[CrossRef]

J. Appl. Phys. (2)

S. T. Wu and C. S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys. 65(2), 527 (1989).
[CrossRef]

A. Jákli, D. R. Kim, L. C. Chien, and A. Saupe, “Effect of a polymer network on the alignment and the rotational viscosity of a nematic liquid crystal,” J. Appl. Phys. 72(7), 3161 (1992).
[CrossRef]

Liq. Cryst. (1)

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15(3), 395–407 (1993).
[CrossRef]

Liquid Crystals (1)

H. Q. Xianyu, S. T. Wu, and C. L. Lin, “Dual frequency liquid crystals: a review,” Liquid Crystals 36(6), 717–726 (2009).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

P. J. Bos and K. R. Beran, “The pi-cell, A Fast Liquid-Crystal Optical Switching Device,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 113(1), 329–339 (1984).
[CrossRef]

Opt. Commun. (1)

M. Ye and S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225(4–6), 277–280 (2003).
[CrossRef]

Opt. Express (5)

Rev. Sci. Instrum. (1)

M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Love, and A. F. Naumov, “Wave front control systems based on modal liquid crystal lenses,” Rev. Sci. Instrum. 71(9), 3290–3297 (2000).
[CrossRef]

Sov. Tech. Phys. (1)

V. A. Dorezyuk, A. F. Naumov, and V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Shearing effects on LC molecular alignment in a PNLC device. (a) Before shear and (b) after shear. The glass substrates are shown in blue, and the ITO electrode as a red layer. The red ellipse schematically show the LC molecules, and the thin black lines represent the polymer network.

Fig. 2
Fig. 2

Effect of shearing process on the transmission of a PNLC device between crossed polarizers, as a function of wavelength showing that shearing dramatically reduces the effect of scattering.

Fig. 3
Fig. 3

Response time measurements of the PNLC showing the time taken to switch from an arbitrary starting phase (as shown on the x-axis) to an arbitrary end phase (shown on the y-axis). A phase of 0 corresponds to 0 applied voltage. The diagonal (bottom left to top right) values are all zero as then no switching occurs. The maximum response time (for 2 waves switching).

Fig. 4
Fig. 4

Residual phase fluctuations in the PNLC caused by fluctuations in the LC director as it attempts to follow the applied AC field. A fixed amplitude AC voltage was applied to a cell, placed between crossed polarizer’s, corresponding to a particular phase (as indicated on the x-axis) and the resultant intensity ripple on the transmitted light was used to calculate the residual phase ripple, as indicated on the y-axis. The error bars are small compared to the symbol sizes.

Fig. 5
Fig. 5

(a) Static scattering and (b) dynamic scattering in a PNLC. The results are normalized to the off state. The error bars are small compared to the symbol sizes.

Metrics