Abstract

We propose a bidirectional tunable optical diode based on a periodically poled lithium niobate (PPLN) with defect. An acoustic wave propagates together with the light beam so that a collinear photon-phonon interaction happens, which affects the nonlinear optical processes in PPLN. The fundamental wave exhibits an optical diode effect, i.e., the light only may travel toward a single direction while the opposite way is isolated. However, the acoustic wave could be used to adjust the contrast of optical isolation from −1 to 1. A direction-optional operation is thus realized. Moreover, the advantages of our tunable PPLN optical diode are also discussed.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002).
    [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
    [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
    [CrossRef]
  4. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  5. J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
    [CrossRef]
  6. T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
    [CrossRef]
  7. X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 .
    [CrossRef] [PubMed]
  8. K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B 16(2), 267–269 (1999).
    [CrossRef]
  9. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001).
    [CrossRef]
  10. Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
    [CrossRef]
  11. S. M. Gao, C. X. Yang, X. S. Xiao, Y. Tian, Z. You, and G. F. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” J. Lightwave Technol. 25(3), 710–718 (2007).
    [CrossRef]
  12. X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
    [CrossRef]
  13. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
    [CrossRef]
  14. L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
    [CrossRef]
  15. W. J. Lu, Y. P. Chen, L. H. Miu, X. F. Chen, Y. X. Xia, and X. L. Zeng, “All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions,” Opt. Express 16(1), 355–361 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-1-355 .
    [CrossRef] [PubMed]
  16. Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [CrossRef]
  17. Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11965 .
    [CrossRef] [PubMed]
  18. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 9.
  19. Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).
  20. H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, and P. G. R. Smith, “Broadband monolithic acousto-optic tunable filter,” Opt. Lett. 25(5), 305–307 (2000).
    [CrossRef]
  21. Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
    [CrossRef]

2009 (3)

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11965 .
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2005 (1)

Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
[CrossRef]

2003 (2)

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

2002 (2)

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002).
[CrossRef]

2001 (2)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001).
[CrossRef]

X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 .
[CrossRef] [PubMed]

2000 (1)

1999 (3)

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

1997 (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

1988 (1)

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

Akaike, M.

Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
[CrossRef]

Assanto, G.

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Chen, S.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Chen, X. F.

Chen, Y.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Chen, Y. P.

Cristiani, I.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Degiorgio, V.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Fan, S. H.

Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Fujimura, M.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
[CrossRef]

Fukuchi, Y.

Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
[CrossRef]

Gallo, K.

Gao, S. M.

Gnewuch, H.

Guo, Y. L.

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

Huang, D. X.

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

Huang, Z.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Ishizuki, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
[CrossRef]

Jiang, W. H.

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

Jin, G. F.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Kong, Y.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Leng, F.

Li, B.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Li, Y. H.

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 .
[CrossRef] [PubMed]

Liberale, C.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Liu, H.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Liu, S.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Liu, X. M.

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 .
[CrossRef] [PubMed]

Lu, W. J.

Lu, Y. Q.

Maeda, J.

Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Ming, N. B.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

Miu, L. H.

Nishihara, H.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
[CrossRef]

Pannell, C. N.

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001).
[CrossRef]

Qian, X. S.

Razzari, L.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Ross, G. W.

Salamo, G. J.

Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002).
[CrossRef]

Shui, Y. A.

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

Smith, P. G. R.

Suhara, T.

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
[CrossRef]

Sun, J. Q.

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

Tediosi, R.

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Tian, Y.

Wang, J.

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

Wang, Y.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Xia, Y. X.

Xiao, M.

Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002).
[CrossRef]

Xiao, X. S.

Xu, F.

Xu, J.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Yan, W.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Yang, C. X.

You, Z.

Yu, Z. F.

Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Yu, Z. Y.

Zayer, N. K.

Zeng, X. L.

Zhang, G.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Zhang, H. Y.

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

X. M. Liu, H. Y. Zhang, and Y. H. Li, “Optimal design for the quasi-phase- matching three-wave mixing,” Opt. Express 9(12), 631–636 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-12-631 .
[CrossRef] [PubMed]

Zhang, L.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Zhang, W.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Zhang, X. L.

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

Zhu, S. N.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Zhu, Y. Y.

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

Appl. Phys. Lett. (2)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79(3), 314–316 (2001).
[CrossRef]

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, “Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz,” Appl. Phys. Lett. 53(15), 1381–1383 (1988).
[CrossRef]

IEEE J. Quantum Electron. (6)

Y. Fukuchi, M. Akaike, and J. Maeda, “Characteristics of all-optical ultrafast gate switches using cascade of second-harmonic generation and difference frequency mixing in quasi-phase-matched lithium niobate waveguides,” IEEE J. Quantum Electron. 41(5), 729–734 (2005).
[CrossRef]

X. M. Liu, H. Y. Zhang, Y. L. Guo, and Y. H. Li, “Optimal Design and Applications for Quasi-Phase-Matching Three-Wave Mixing,” IEEE J. Quantum Electron. 38(9), 1225–1233 (2002).
[CrossRef]

L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron. 39(11), 1486–1491 (2003).
[CrossRef]

Y. Q. Lu, M. Xiao, and G. J. Salamo, “Coherent microwave generation in a nonlinear photonic crystal,” IEEE J. Quantum Electron. 38(5), 481–485 (2002).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

J. Wang, J. Q. Sun, X. L. Zhang, and D. X. Huang, “All-optical ultrawideband pulse generation using cascaded periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(3), 292–299 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Suhara, H. Ishizuki, M. Fujimura, and H. Nishihara, “Waveguide quasi-phase-matched sum-frequency generation device for high-efficiency optical sampling,” IEEE Photon. Technol. Lett. 11(8), 1027–1029 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

Z. F. Yu and S. H. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

OSA TOPS (1)

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang, and G. Zhang, “The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold,” OSA TOPS 87, 53–57 (2003).

Phys. Rev. Lett. (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278(5339), 843–846 (1997).
[CrossRef]

Other (1)

A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of a nonreciprocal PPLN. Λ0 is the period of grating. A defect of length δL is introduced at x = L1.

Fig. 2
Fig. 2

The contrast is tuned by the intensity of acoustic wave. Here L1 = 4/10 L. The dephasing is (a) 0.3π and (b) π. The red solid and green dashes represent the optical isolation with contrast C = 1 and −1 respectively.

Fig. 3
Fig. 3

Evolution of the normalized Z-polarized FW intensity versus propagation distance with L1 = 4/10 L, δφ = 0.3π. Black solid and red dashed curves refer to forward and backward propagation of fundamental waves, respectively.

Fig. 4
Fig. 4

The tunable range of contrast C = ( T λ + T λ ) / ( T λ + + T λ ) versus different dephasing δφ with different lengths of L1 . Black dashes and red solids represent the maximum and minimum contrast by tuning the intensity of acoustic wave, respectively. The blue dots show the contrast without acoustic.

Fig. 5
Fig. 5

The tunable range of contrast versus different dephasing δφ at L1 = 4.9/10. Black dashes and red solids represent the maximum and minimum contrast by tuning the intensity of acoustic wave, respectively. The blue dots show the contrast without acoustic wave.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ d A 1 z d x = i K 1 A 1 z * A 2 z i K 2 A 1 y d A 2 z d x = i 2 K 1 A 1 z 2 d A 1 y d x = i K 2 * A 1 z

Metrics