Abstract

The possibility of enhancing the energy gain in vacuum electron acceleration by Airy beams is examined. The characteristics of transverse acceleration and non-diffraction of Airy beam can lead to the formation of a long “asymmetric field channel” along the propagation axis, where the intense asymmetric field can accelerate the injected electron to higher energy. Meanwhile, the injection energy of electron plays an important role in determining the final energy gain.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
    [CrossRef]
  2. Y. Cheng and Z. Xu, “Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge,” Appl. Phys. Lett. 74(15), 2116–2118 (1999).
    [CrossRef]
  3. N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
    [CrossRef]
  4. Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
    [CrossRef] [PubMed]
  5. G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
    [CrossRef] [PubMed]
  6. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  7. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
    [CrossRef]
  8. S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
    [CrossRef]
  9. D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).
    [CrossRef]
  10. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [CrossRef]
  11. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [CrossRef] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [CrossRef]
  13. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [CrossRef]

2008 (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

2007 (2)

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

2005 (1)

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).
[CrossRef]

2004 (1)

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

2002 (2)

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

2001 (1)

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

1999 (1)

Y. Cheng and Z. Xu, “Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge,” Appl. Phys. Lett. 74(15), 2116–2118 (1999).
[CrossRef]

1997 (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
[CrossRef]

1987 (1)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[CrossRef]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[CrossRef]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[CrossRef]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Cao, N.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Cheng, Y.

Y. Cheng and Z. Xu, “Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge,” Appl. Phys. Lett. 74(15), 2116–2118 (1999).
[CrossRef]

Christodoulides, D. N.

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
[CrossRef]

Guo, H.

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
[CrossRef]

Ho, Y. K.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Imasaki, K.

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).
[CrossRef]

Ito, H.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Keitel, C. H.

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

Kong, Q.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Li, D.

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).
[CrossRef]

Liu, M.

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

Liu, S.

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[CrossRef]

Nishida, Y.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Salamin, Y. I.

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

Siviloglou, G. A.

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[CrossRef]

Stupakov, G. V.

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

Tang, H.

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

Wang, P. X.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Xu, Z.

Y. Cheng and Z. Xu, “Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge,” Appl. Phys. Lett. 74(15), 2116–2118 (1999).
[CrossRef]

Yuan, X. Q.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Yugami, N.

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Zolotorev, M. S.

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Cheng and Z. Xu, “Vacuum laser acceleration by an ultrashort, high-intensity laser pulse with a sharp rising edge,” Appl. Phys. Lett. 74(15), 2116–2118 (1999).
[CrossRef]

D. Li and K. Imasaki, “Vacuum laser-driven acceleration by a slits-truncated Bessel beam,” Appl. Phys. Lett. 86(3), 031110 (2005).
[CrossRef]

Nat. Photonics (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Opt. Commun. (2)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55(6), 447–449 (1985).
[CrossRef]

N. Cao, Y. K. Ho, Q. Kong, P. X. Wang, X. Q. Yuan, Y. Nishida, N. Yugami, and H. Ito, “Accurate description of Gaussian laser beams and electron dynamics,” Opt. Commun. 204(1-6), 7–15 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

S. Liu, H. Guo, H. Tang, and M. Liu, “Direct acceleration of electrons using single Hermite-Gaussian beam and Bessel beam in vacuum,” Phys. Lett. A 324(2-3), 104–113 (2004).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(3), 3539–3545 (1997).
[CrossRef]

Phys. Rev. Lett. (4)

Y. I. Salamin and C. H. Keitel, “Electron acceleration by a tightly focused laser beam,” Phys. Rev. Lett. 88(9), 095005 (2002).
[CrossRef] [PubMed]

G. V. Stupakov and M. S. Zolotorev, “Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches,” Phys. Rev. Lett. 86(23), 5274–5277 (2001).
[CrossRef] [PubMed]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a)-(c) Propagation dynamics of the field components E x, E z, and B y, respectively. Parameters used here are a = 0.05 , λ = 1 μ m , and x 0 = 5 λ .

Fig. 2
Fig. 2

(a)-(d) Cross sections of E x at zr , 10zr , 30zr , and 50zr , respectively. (e)-(h) Cross sections of E z at zr , 10zr , 30zr , and 50zr , respectively. And, (i)-(l) cross sections of B y at zr , 10zr , 30zr , and 50zr , respectively. Other parameters are the same as those of Fig. 1.

Fig. 3
Fig. 3

(Color online) (a) The trajectory, and (b) the energy gain of electron in an intense Airy laser beam. (c)-(e) The field components E x, E z, and B y, respectively, sensed by the electron along its trajectory. (f)-(j) are small portions of (a)-(e), respectively. And, (k)-(o) are small portions of (f)-(j), respectively. Parameters used here are a = 0.05, λ = 1μm, x 0 = 5λ, q = 20, φ 0 = 0, the full interaction time ωt = 1 × 106, the initial location of electron (x, z) = (0.1x 0, 0), the injection angle of electron θ 0 = 0, the black curves and the red curves are calculated with the initial injection energy γ 0 = 15 and 30, respectively. Energy gain = (γ -γ 0)mc 2.

Fig. 4
Fig. 4

Variation of the energy gain with the scaled injection energy γ0. Parameters used here are the same as those of Fig. 3.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

2 ψ s 2 + 4 i ψ ξ = 0 ,
ψ ( s , ξ ) = A i ( A ) exp ( B ) ,
A = s ( ξ / 4 ) 2 + i a ξ / 2 ,    B = a s a ξ 2 / 8 i ξ 3 / 96 + i a 2 ξ / 4 + i s ξ / 4 ,
E x = i E { C e x A i ( A ) + D e x A i ' ( A ) } / ( 2 k 2 x 0 2 ) ,
E y = 0 ,
E z = E { C e z A i ( A ) + D e x A i ' ( A ) } / ( 4 k 3 x 0 3 ) ,
B x = 0 ,
B y = i E { C b y A i ( A ) + D b y A i ' ( A ) } / ( 4 k 2 x 0 2 ) ,
B z = 0 ,
E = E 0 exp ( i ( η + φ 0 ) ) exp ( B ) ,
C e x = 2 a 2 + 2 i a ξ ξ 2 / 4 + 2 s + 2 k 2 x 0 2 ,
D e x = 4 a + i ξ ,
C e z = 2 a 3 + 9 i a 2 ξ / 2 + a ( 3 ξ 2 / 2 + 6 s 4 k 2 x 0 2 ) i ( 2 i + ξ 3 / 8 3 s ξ / 2 + ξ k 2 x 0 2 ) ,
D e z = 6 a 2 + 4 i a ξ + 2 s ξ 2 / 2 4 k 2 x 0 2 ,
C b y = 2 a 2 + 2 i a ξ ξ 2 / 4 + 2 s 4 k 2 x 0 2 ,
D b y = 4 a + i ξ .
d p d t = e ( E + β × B ) ,   d χ d t = e c β E ,

Metrics