Abstract

Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Apr. 2002. Tech. Rep., ET-Docket 98–153, FCC02–48.
  2. D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
    [CrossRef]
  3. M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in communication engineering, (Wiley, West Sussex, England, 2004).
  4. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
  5. Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
    [CrossRef] [PubMed]
  6. J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
    [CrossRef]
  7. C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
    [CrossRef]
  8. F. Zeng and J. Yao, “Investigation of phase modulator based all-optical bandpass filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005).
    [CrossRef]
  9. F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
    [CrossRef]
  10. X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
    [CrossRef] [PubMed]
  11. A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
    [CrossRef]
  12. H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
    [CrossRef]
  13. W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
    [CrossRef]
  14. S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
    [CrossRef]
  15. S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
    [CrossRef]
  16. R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984).
    [CrossRef]
  17. A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
    [CrossRef]
  18. F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).
  19. J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
    [CrossRef]
  20. R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).
  21. H. Lv, T. Shu, Y. Yu, D. Huang, L. Dong, and R. Zhang, “Fast power control and wavelength switching in a tunable SOA-integrated SGDBR laser,” IEEE OptoElectronics and Communications Conference (OECC 2009), Pap. ThPD4.

2009 (2)

X. Yu, T. Braidwood Gibbon, M. Pawlik, S. Blaaberg, and I. Tafur Monroy, “A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser,” Opt. Express 17(12), 9680–9687 (2009).
[CrossRef] [PubMed]

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

2008 (2)

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

2007 (6)

A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
[CrossRef]

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

2006 (2)

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

2005 (1)

2003 (1)

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

1999 (1)

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[CrossRef]

1997 (1)

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

1994 (1)

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

1984 (1)

R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984).
[CrossRef]

Audagnotto, P.

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

Barman, A. D.

A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
[CrossRef]

Barry, L. P.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

Basu, P. K.

A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
[CrossRef]

Blaaberg, S.

Blais, S.

Braidwood Gibbon, T.

Chen, H.

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Chen, L.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Chen, M.

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Cheng, C.

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

Cohen, D. A.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

Coldren, L. A.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

Connolly, E.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

Delpiano, F.

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

DenBaars, S. P.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

Dong, L.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Eisenstein, G.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[CrossRef]

Fu, S.

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Heimbuch, M. E.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

Hirt, W.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Jiang, S.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Kaminow, I. P.

R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984).
[CrossRef]

Kaszubowska-Anandarajah, A.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

Lee, S.-L.

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

Mecozzi, A.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[CrossRef]

Mork, J.

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[CrossRef]

Paoletti, R.

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

Pawlik, M.

Perry, P.

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

Porcino, D.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Puleo, M.

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

Qiu, C.

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Research, P.

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

Sengupta, I.

A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
[CrossRef]

Shum, P.

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Sun, J.

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

Tafur Monroy, I.

Tucker, R. S.

R. S. Tucker and I. P. Kaminow, “High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers,” J. Lightwave Technol. 2(4), 385–393 (1984).
[CrossRef]

Wang, C.

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Wang, D.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Wang, J.

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

Wang, Q.

Wen, Y. J.

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Xie, S.

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

Yao, J.

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[CrossRef]

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng and J. Yao, “Investigation of phase modulator based all-optical bandpass filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005).
[CrossRef]

Yao, J. P.

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

Yu, X.

Yu, Y.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Zeng, F.

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultra-wideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).

Q. Wang, F. Zeng, S. Blais, and J. Yao, “Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier,” Opt. Lett. 31(21), 3083–3085 (2006).
[CrossRef] [PubMed]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

F. Zeng and J. Yao, “Investigation of phase modulator based all-optical bandpass filter,” J. Lightwave Technol. 23(4), 1721–1728 (2005).
[CrossRef]

Zhang, J.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Zhang, R.

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

Zhang, W.

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

Zhang, X.

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

Zhong, W.-D.

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

Chin. J. Semicond. (1)

R. Zhang, L. Dong, D. Wang, J. Zhang, L. Chen, S. Jiang, and Y. Yu, “Sampled grating DBR lasers with 35nm quasi-continuous tuning range,” Chin. J. Semicond. 29, 2301–2303 (2008).

IEEE Commun. Mag. (1)

D. Porcino, P. Research, and W. Hirt, “Ultra-wideband radio technology: Potential and challenges ahead,” IEEE Commun. Mag. 41(7), 66–74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

S.-L. Lee, M. E. Heimbuch, D. A. Cohen, L. A. Coldren, and S. P. DenBaars, “Integration of semiconductor laser amplifiers with sampled grating tunable lasers for WDM applications,” IEEE J. Sel. Top. Quantum Electron. 3(2), 615–627 (1997).
[CrossRef]

J. Mork, A. Mecozzi, and G. Eisenstein, “The modulation response of a semiconductor laser amplifier,” IEEE J. Sel. Top. Quantum Electron. 5(3), 851–860 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

A. Kaszubowska-Anandarajah, E. Connolly, L. P. Barry, and P. Perry, “Demonstration of wavelength packet switched radio-over-fiber system,” IEEE Photon. Technol. Lett. 19(4), 200–202 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, and S. Xie, “A novel composite method for ultra-wideband doublet pulses generation,” IEEE Photon. Technol. Lett. 19(24), 2021–2023 (2007).
[CrossRef]

W. Zhang, J. Sun, J. Wang, C. Cheng, and X. Zhang, “Ultra-wideband pulse train generation based on turbo-switch structures,” IEEE Photon. Technol. Lett. 21(5), 271–273 (2009).
[CrossRef]

S. Fu, W.-D. Zhong, Y. J. Wen, and P. Shum, “Photonic monocycle pulse frequency up-conversion for ultrawideband-over-fiber applications,” IEEE Photon. Technol. Lett. 20(12), 1006–1008 (2008).
[CrossRef]

J. Yao and Q. Wang, “Photonic microwave bandpass filter with negative coefficients using a polarization modulator,” IEEE Photon. Technol. Lett. 19(9), 644–646 (2007).
[CrossRef]

C. Wang, F. Zeng, and J. P. Yao, “All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion,” IEEE Photon. Technol. Lett. 19(3), 137–139 (2007).
[CrossRef]

F. Zeng and J. Yao, “Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator,” IEEE Photon. Technol. Lett. 18(19), 2062–2064 (2006).
[CrossRef]

J. Lightwave Technol. (3)

Manufact. Technol. (1)

F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, ““High frequency modeling and characterization of high performanceDFB laser modules,” IEEE Trans. Comp., Packag,” Manufact. Technol. 17, 412–417 (1994).

Microw. Opt. Technol. Lett. (1)

A. D. Barman, I. Sengupta, and P. K. Basu, “A simple SPICE model for traveling wave semiconductor laser amplifier,” Microw. Opt. Technol. Lett. 49(7), 1558–1561 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (3)

M. Ghavami, L. B. Michael, and R. Kohno, Ultra wide-band signals and systems in communication engineering, (Wiley, West Sussex, England, 2004).

Fed. Commun. Commission, Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, Apr. 2002. Tech. Rep., ET-Docket 98–153, FCC02–48.

H. Lv, T. Shu, Y. Yu, D. Huang, L. Dong, and R. Zhang, “Fast power control and wavelength switching in a tunable SOA-integrated SGDBR laser,” IEEE OptoElectronics and Communications Conference (OECC 2009), Pap. ThPD4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Small-signal equivalent circuit model of the SOA section

Fig. 2
Fig. 2

Microwave measurement setup for the SOA section of the SOA-integrated SGDBR laser.

Fig. 3
Fig. 3

Measured and fitted S11 of the SOA section of the SOA-integrated SGDBR laser (SOA section biased at 90 mA, gain, phase, front and rear mirror section are driven at 110, 0, 29.5 and 25.5 mA respectively to set the output wavelength of the laser at 1538.85 nm).

Fig. 4
Fig. 4

Measured and fitted S21 of the SOA section of the SOA-integrated SGDBR laser for three different operating wavelengths of the laser.

Fig. 5
Fig. 5

Simulation of UWB pulse generation at the wavelength of 1538.85nm, using a modulating pattern sequence ‘0111 1111 1111 1111 1111 1111 1111 1111’ for the SOA section. (a) the input modulation pattern with peak-to-peak current of 20 mA for the SOA section, and (b) the output voltage of the equivalent circuit model, which can be regarded as the small-signal optical gain of the SOA section.

Fig. 6
Fig. 6

Experimental setup for UWB pulse generation by direct current modulation of the SOA section of the SOA-integrated SGDBR laser.

Fig. 7
Fig. 7

Experimental results of UWB generation by direct current modulation of the SOA section of the SOA-integrated SGDBR laser. (a) pulses train out from the Pulse Pattern Generator, (b) optical spectra of three selected wavelength channels, (c) the generated UWB pulses in the time domain for the corresponding wavelength channels, and (d) measured RF spectra corresponding to the pulses in (c).

Tables (1)

Tables Icon

Table 1 Extracted values of extrinsic and intrinsic circuit parameters of the SOA section of the SOA-integrated SGDBR laser

Metrics