Abstract

High resolution monitoring of stimulus-evoked retinal neural activities is important for understanding retinal neural mechanisms, and can be a powerful tool for retinal disease diagnosis and treatment outcome evaluation. Fast intrinsic optical signals (IOSs), which have the time courses comparable to that of electrophysiological activities in the retina, hold the promise for high resolution imaging of retinal neural activities. However, application of fast IOS imaging has been hindered by the contamination of slow, high magnitude optical responses associated with transient hemodynamic and metabolic changes. In this paper we demonstrate the feasibility of separating fast retinal IOSs from slow optical responses by combining flicker stimulation and dynamic (temporal) differential image processing. A near infrared flood-illumination microscope equipped with a high-speed (1000 Hz) digital camera was used to conduct concurrent optical imaging and ERG measurement of isolated frog retinas. High spatiotemporal resolution imaging revealed that fast IOSs could follow flicker frequency up to at least 6 Hz. Comparable time courses of fast IOSs and ERG kinetics provide evidence that fast IOSs are originated from stimulus activated retinal neurons.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007).
    [CrossRef] [PubMed]
  2. R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006).
    [CrossRef] [PubMed]
  3. B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
    [CrossRef]
  4. Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
    [CrossRef] [PubMed]
  5. R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006).
    [CrossRef] [PubMed]
  6. H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000).
    [CrossRef] [PubMed]
  7. D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
    [PubMed]
  8. D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000).
    [CrossRef] [PubMed]
  9. B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
    [CrossRef]
  10. M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
    [CrossRef] [PubMed]
  11. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
    [CrossRef] [PubMed]
  12. I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
    [CrossRef] [PubMed]
  13. K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
    [CrossRef] [PubMed]
  14. H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
    [CrossRef] [PubMed]
  15. M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
    [CrossRef] [PubMed]
  16. H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
    [CrossRef] [PubMed]
  17. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
    [CrossRef]
  18. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
    [CrossRef] [PubMed]
  19. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
    [CrossRef] [PubMed]
  20. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [CrossRef] [PubMed]
  21. V. J. Srinivasan, Y. Chen, J. S. Duker, and J. G. Fujimoto, “In vivo functional imaging of intrinsic scattering changes in the human retina with high-speed ultrahigh resolution OCT,” Opt. Express 17(5), 3861–3877 (2009).
    [CrossRef] [PubMed]
  22. K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008).
    [CrossRef] [PubMed]
  23. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
    [CrossRef] [PubMed]
  24. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
    [PubMed]
  25. M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
    [CrossRef] [PubMed]
  26. J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
    [CrossRef] [PubMed]
  27. X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008).
    [CrossRef] [PubMed]
  28. N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
    [CrossRef] [PubMed]
  29. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
    [CrossRef] [PubMed]
  30. X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009).
    [CrossRef]
  31. X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
    [CrossRef] [PubMed]
  32. X. C. Yao, D. M. Rector, and J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003).
    [CrossRef] [PubMed]
  33. I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992).
    [CrossRef] [PubMed]
  34. L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
    [PubMed]
  35. G. H. Kim, P. Kosterin, A. L. Obaid, and B. M. Salzberg, “A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals,” Biophys. J. (2007).
  36. A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
    [CrossRef] [PubMed]
  37. B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
    [CrossRef] [PubMed]
  38. D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43(Suppl 1), S7–S11 (1993).
    [PubMed]
  39. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
    [CrossRef] [PubMed]
  40. S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993).
    [CrossRef] [PubMed]
  41. T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987).
    [PubMed]
  42. T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990).
    [PubMed]

2009

2008

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008).
[CrossRef] [PubMed]

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008).
[CrossRef] [PubMed]

2007

R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. H. Gao, and D. T. Miller, “In vivo functional imaging of human cone photoreceptors,” Opt. Express 15(24), 16141–16160 (2007).
[CrossRef] [PubMed]

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007).
[CrossRef] [PubMed]

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

2006

R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006).
[CrossRef] [PubMed]

Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
[CrossRef] [PubMed]

R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

2005

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
[CrossRef] [PubMed]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

2003

X. C. Yao, D. M. Rector, and J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003).
[CrossRef] [PubMed]

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

2000

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000).
[CrossRef] [PubMed]

H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000).
[CrossRef] [PubMed]

1994

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
[CrossRef] [PubMed]

1993

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43(Suppl 1), S7–S11 (1993).
[PubMed]

S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993).
[CrossRef] [PubMed]

1992

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992).
[CrossRef] [PubMed]

1991

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

1990

T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990).
[PubMed]

1988

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

1987

T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987).
[PubMed]

1985

B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
[CrossRef] [PubMed]

1984

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

1981

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

1978

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

1976

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

1973

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

1968

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Abràmoff, M. D.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Ahnelt, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Alexander, K. R.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

Aloni, E.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Anger, E.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Baker, B. J.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Barrowes, B.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

Belkin, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Bennett, N.

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Blonder, G. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Brisson, A.

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

Brown, J. E.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Byrne, P. M.

I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992).
[CrossRef] [PubMed]

Carnay, L.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Cense, B.

Chabre, M.

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

Chakravarthy, U.

R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006).
[CrossRef] [PubMed]

Chapron, Y.

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

Chen, C. S.

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

Chen, Y.

Cohen, L. B.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Dawis, S. M.

S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993).
[CrossRef] [PubMed]

Derlacki, D. J.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

Djurisic, M.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Drexler, W.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Duker, J. S.

Eysteinsson, T.

T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987).
[PubMed]

Falk, C. X.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Fishman, G. A.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

Foust, A.

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

Foust, A. J.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

Frumkes, T. E.

T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990).
[PubMed]

T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987).
[PubMed]

Fujimoto, J. G.

Gainer, H.

B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
[CrossRef] [PubMed]

Gao, W. H.

George, J. S.

Grieve, K.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008).
[CrossRef] [PubMed]

Grinvald, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Harary, H. H.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Harwerth, R. S.

R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Hille, B.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Hoffmann, W.

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

Hofmann, K. P.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

Hogg, R. E.

R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006).
[CrossRef] [PubMed]

Hood, D. C.

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000).
[CrossRef] [PubMed]

Isacoff, E. Y.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Jonnal, R. S.

Kahlert, M.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

Kardon, R.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Keynes, R. D.

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Kleinfeld, D.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Knopfel, T.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Kosmidis, E. K.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Krause, A.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

Kreutz, W.

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

Krupsky, S.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Kühn, H.

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

Kwon, Y. H.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Landowne, D.

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43(Suppl 1), S7–S11 (1993).
[PubMed]

LaPorta, A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Lee, H.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Li, Y. G.

X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009).
[CrossRef]

Liu, L.

X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009).
[CrossRef]

McCluskey, M. D.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

Meyer-Rüsenberg, B.

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

Michel-Villaz, M.

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

Miller, D. T.

Murayama, K.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
[CrossRef] [PubMed]

Naarendorp, F.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
[CrossRef] [PubMed]

Nelson, D. A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Nickells, R. W.

R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007).
[CrossRef] [PubMed]

Obaid, A. L.

B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
[CrossRef] [PubMed]

Odel, J. G.

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

Pavlidis, M.

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

Peachey, N. S.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

Pepperberg, D. R.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

Perry, B.

Pflug, R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Pieribone, V. A.

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Pinto, L. H.

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Pokorny, J.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Pollack, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Popov, S.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Povazay, B.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Qin, Y. W.

Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
[CrossRef] [PubMed]

Qiu, P.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Quigley, H. A.

R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006).
[CrossRef] [PubMed]

Raccuia-Behling, F.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Rector, D. M.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

X. C. Yao, D. M. Rector, and J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003).
[CrossRef] [PubMed]

Reitsamer, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Rha, J.

Roorda, A.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008).
[CrossRef] [PubMed]

Rosner, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Rossetto, M.

S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993).
[CrossRef] [PubMed]

Saibil, H.

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

Salzberg, B. M.

B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
[CrossRef] [PubMed]

Sandlin, R.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Sattmann, H.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Schei, J. L.

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

Scholl, H. P.

H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000).
[CrossRef] [PubMed]

Sieving, P. A.

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
[CrossRef] [PubMed]

Slusher, R. E.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Soliz, P.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stepnoski, R. A.

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Stupp, T.

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

Tasaki, I.

I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Taylor, J. R.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Thanos, S.

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

Ts’o, D.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Uhl, R.

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

Unterhuber, A.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

Vanzetta, I.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Wachowiak, M.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Wang, W. J.

Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
[CrossRef] [PubMed]

Watanabe, A.

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

Winn, B. J.

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

Wojtkowski, M.

Wu, S. M.

T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990).
[PubMed]

Xu, G. Z.

Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
[CrossRef] [PubMed]

Yamauchi, A.

Yao, X. C.

X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009).
[CrossRef]

X. C. Yao and Y. B. Zhao, “Optical dissection of stimulus-evoked retinal activation,” Opt. Express 16(17), 12446–12459 (2008).
[CrossRef] [PubMed]

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005).
[CrossRef] [PubMed]

X. C. Yao, D. M. Rector, and J. S. George, “Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes,” Appl. Opt. 42(16), 2972–2978 (2003).
[CrossRef] [PubMed]

Zecevic, D.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Zhang, Y.

Zhao, Y. B.

Zimmerman, B.

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

Zochowski, M.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Zrenner, E.

H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000).
[CrossRef] [PubMed]

Appl. Opt.

Arch. Ophthalmol.

R. S. Harwerth and H. A. Quigley, “Visual field defects and retinal ganglion cell losses in patients with glaucoma,” Arch. Ophthalmol. 124(6), 853–859 (2006).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun.

I. Tasaki and P. M. Byrne, “Rapid structural changes in nerve fibers evoked by electric current pulses,” Biochem. Biophys. Res. Commun. 188(2), 559–564 (1992).
[CrossRef] [PubMed]

Biophys. J.

M. Michel-Villaz, A. Brisson, Y. Chapron, and H. Saibil, “Physical analysis of light-scattering changes in bovine photoreceptor membrane suspensions,” Biophys. J. 46(5), 655–662 (1984).
[CrossRef] [PubMed]

X. C. Yao, A. Foust, D. M. Rector, B. Barrowes, and J. S. George, “Cross-polarized reflected light measurement of fast optical responses associated with neural activation,” Biophys. J. 88(6), 4170–4177 (2005).
[CrossRef] [PubMed]

Biophys. Struct. Mech.

K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, “Measurements on fast light-induced light-scattering and -absorption changes in outer segments of vertebrate light sensitive rod cells,” Biophys. Struct. Mech. 2(1), 61–77 (1976).
[CrossRef] [PubMed]

Curr. Eye Res.

Y. W. Qin, G. Z. Xu, and W. J. Wang, “Dendritic abnormalities in retinal ganglion cells of three-month diabetic rats,” Curr. Eye Res. 31(11), 967–974 (2006).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol.

B. Meyer-Rüsenberg, M. Pavlidis, T. Stupp, and S. Thanos, “Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy,” Graefes Arch. Clin. Exp. Ophthalmol. 245(7), 1009–1018 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

K. Grieve and A. Roorda, “Intrinsic signals from human cone photoreceptors,” Invest. Ophthalmol. Vis. Sci. 49(2), 713–719 (2008).
[CrossRef] [PubMed]

M. D. Abràmoff, Y. H. Kwon, D. Ts’o, P. Soliz, B. Zimmerman, J. Pokorny, and R. Kardon, “Visual stimulus-induced changes in human near-infrared fundus reflectance,” Invest. Ophthalmol. Vis. Sci. 47(2), 715–721 (2006).
[CrossRef] [PubMed]

J. Gen. Physiol.

B. M. Salzberg, A. L. Obaid, and H. Gainer, “Large and rapid changes in light scattering accompany secretion by nerve terminals in the mammalian neurohypophysis,” J. Gen. Physiol. 86(3), 395–411 (1985).
[CrossRef] [PubMed]

J. Inn. Opt. Health Scie.

X. C. Yao, L. Liu, and Y. G. Li, “Intrinsic optical signal imaging of retinal activity in frog eye,” J. Inn. Opt. Health Scie. 2(02), 201–208 (2009).
[CrossRef]

J. Neuroophthalmol.

D. C. Hood, J. G. Odel, C. S. Chen, and B. J. Winn, “The multifocal electroretinogram,” J. Neuroophthalmol. 23(3), 225–235 (2003).
[PubMed]

J. Neurophysiol.

T. E. Frumkes and T. Eysteinsson, “Suppressive rod-cone interaction in distal vertebrate retina: intracellular records from Xenopus and Necturus,” J. Neurophysiol. 57(5), 1361–1382 (1987).
[PubMed]

T. E. Frumkes and S. M. Wu, “Independent influences of rod adaptation on cone-mediated responses to light onset and offset in distal retinal neurons,” J. Neurophysiol. 64(3), 1043–1054 (1990).
[PubMed]

J. Neurosci. Methods

B. J. Baker, H. Lee, V. A. Pieribone, L. B. Cohen, E. Y. Isacoff, T. Knopfel, and E. K. Kosmidis, “Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells,” J. Neurosci. Methods 161(1), 32–38 (2007).
[CrossRef]

Jpn. J. Physiol.

D. Landowne, “Measuring nerve excitation with polarized light,” Jpn. J. Physiol. 43(Suppl 1), S7–S11 (1993).
[PubMed]

Methods Enzymol.

M. Djurisic, M. Zochowski, M. Wachowiak, C. X. Falk, L. B. Cohen, and D. Zecevic, “Optical monitoring of neural activity using voltage-sensitive dyes,” Methods Enzymol. 361, 423–451 (2003).
[CrossRef] [PubMed]

Nature

L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968).
[CrossRef] [PubMed]

Neuroimage

J. L. Schei, M. D. McCluskey, A. J. Foust, X. C. Yao, and D. M. Rector, “Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light,” Neuroimage 40(3), 1034–1043 (2008).
[CrossRef] [PubMed]

Neuroscience

A. J. Foust and D. M. Rector, “Optically teasing apart neural swelling and depolarization,” Neuroscience 145(3), 887–899 (2007).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging 36(1), 57–66 (2005).
[PubMed]

Opt. Express

Opt. Lett.

Physiol. Rev.

L. B. Cohen, “Changes in neuron structure during action potential propagation and synaptic transmission,” Physiol. Rev. 53(2), 373–418 (1973).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A.

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
[CrossRef] [PubMed]

I. Tasaki, A. Watanabe, R. Sandlin, and L. Carnay, “Changes in fluorescence, turbidity, and birefringence associated with nerve excitation,” Proc. Natl. Acad. Sci. U.S.A. 61(3), 883–888 (1968).
[CrossRef] [PubMed]

H. Kühn, N. Bennett, M. Michel-Villaz, and M. Chabre, “Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes,” Proc. Natl. Acad. Sci. U.S.A. 78(11), 6873–6877 (1981).
[CrossRef] [PubMed]

R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991).
[CrossRef] [PubMed]

Proc. Proc. Natl. Acad. Sci.

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, “Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors,” Proc. Proc. Natl. Acad. Sci. 85(15), 5531–5535 (1988).
[CrossRef]

Prog. Retin. Eye Res.

D. C. Hood, “Assessing retinal function with the multifocal technique,” Prog. Retin. Eye Res. 19(5), 607–646 (2000).
[CrossRef] [PubMed]

R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Prog. Retin. Eye Res. 25(3), 249–276 (2006).
[CrossRef] [PubMed]

Science

H. H. Harary, J. E. Brown, and L. H. Pinto, “Rapid light-induced changes in near infrared transmission of rods in Bufo marinus,” Science 202(4372), 1083–1085 (1978).
[CrossRef] [PubMed]

Surv. Ophthalmol.

H. P. Scholl and E. Zrenner, “Electrophysiology in the investigation of acquired retinal disorders,” Surv. Ophthalmol. 45(1), 29–47 (2000).
[CrossRef] [PubMed]

Vet. Ophthalmol.

R. W. Nickells, “Ganglion cell death in glaucoma: from mice to men,” Vet. Ophthalmol. 10(s1Suppl 1), 88–94 (2007).
[CrossRef] [PubMed]

Vis. Neurosci.

N. S. Peachey, K. R. Alexander, D. J. Derlacki, and G. A. Fishman, “Light adaptation, rods, and the human cone flicker ERG,” Vis. Neurosci. 8(2), 145–150 (1992).
[CrossRef] [PubMed]

P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11(3), 519–532 (1994).
[CrossRef] [PubMed]

S. M. Dawis and M. Rossetto, “Light-evoked changes in near-infrared transmission by the ON and OFF channels of the anuran retina,” Vis. Neurosci. 10(4), 687–692 (1993).
[CrossRef] [PubMed]

Other

G. H. Kim, P. Kosterin, A. L. Obaid, and B. M. Salzberg, “A Mechanical Spike Accompanies the Action Potential in Mammalian Nerve Terminals,” Biophys. J. (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the flood-illumination imager for NIR light imaging of fast IOSs. During the measurement, the isolated frog retina was illuminated continuously by the NIR light for recording of stimulus-evoked IOSs; while the visible light stimulator was used for retinal stimulation. Concurrent ERG measurement was conducted to record electrophysiological responses associated with retinal activation. At the dichroic mirror (DM), visible stimulus light was reflected and NIR recording light was passed through. The NIR filter was used to block visible stimulus light, and allow the NIR probe light to reach the CMOS camera.

Fig. 2
Fig. 2

(a) IOS imaging of frog retina activated by 1.0 Hz flicker stimulation. Arrowheads represent the delivery of the flicker pulses. (b) Dynamic differential IOS imaging of the same retina shown in a. Raw images were acquired with a frame speed of 1000 frames/s. Each illustrated frame is an average of 250 frames over 250 ms interval. Each stimulus pulse lasted 10 ms (c) Enlargement of the 7th frame in b. (d) Gray and black traces 1-3 show IOSs and dynamic differential IOSs of retinal areas marked by the red squares 1-3 in c. Green trace depicts the flicker stimuli. (e) Statistics of IOSs in the activated retina shown in a. (f) Statistics of dynamic differential IOSs in the activated retina shown in b. A threshold (0.5% ΔI/I) was used to reduce the effect of background noises on the statistics. In e and f, the red and blue traces present the ratios of retinal areas with positive and negative IOSs, respectively. The black trace shows the difference (i.e. subtraction of the red and blue traces) of the retinal areas with positive and negative IOSs.

Fig. 4
Fig. 4

(a) P1 and T1 present the peak magnitude and time delay (relative to the stimulus onset) of the optical response evoked by the first stimulus flash, and P2 and T2 show averaged peak magnitude and time delay of optical responses elicited by the following stimuli. (b) Comparison of P1 and P2 at different stimulus frequencies shown in Fig. 3c. (c) Comparison of T1 and T2 at different stimulus frequencies shown in Fig. 3c. (d) Both a- and b-waves were observed in the ERG response evoked by the first stimulus flash. b1 and b2 show peak magnitude of ERG b-waves elicited by the first and subsequent stimulus flashes. Ta and Tb show the time delays, relative to the stimulus onset, of the a- and b-waves. (e) Comparison of b1 and b2 at different stimulus frequencies shown in Fig. 3c. (f) Comparison of Ta and Tb at different stimulus frequencies shown in Fig. 3c.

Fig. 3
Fig. 3

(a) Representative raw image of isolated frog retina. The retinal image (400 x 400 pixels) was split to 10 x 10 sub-images for statistics of localized dynamic differential IOSs shown in b. (b) Optical responses activated by the localized visible light spot (green spot). Each trace shows the fractional difference of positive and negative dynamic differential IOSs in each sub-image (40 x 40 pixels) shown in a. (c) Averaged dynamic differential IOSs (left) and concurrent ERG measurements (right) activated by 1-6 Hz flicker stimuli. Two experimental trials were conducted for each stimulus frequency. (b) Normalized cross-correlation ratio of two retinal recording trails for each stimulus frequency shown in Fig. 3c. Black bars show IOS responses, and gray bars show ERG measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I O S t ( x , y ) = I t ( x , y ) I r e f ( x , y ) I r e f ( x , y )
I r e f ( x , y ) = i = t m i = t 1 I i ( x , y ) m

Metrics