Abstract

We present and demonstrate the use of an extreme ultraviolet (EUV) microscope that was developed in-house. Images are acquired using Bragg reflection multilayer optics and a laser-produced plasma light source. The upper-limit spatial resolution of the EUV microscope is 130 nm with a 10 ns exposure time and 250 × 250 μm2 field of view. Resolution is superior to that of visible microscopes with the same size of field of view, and the exposure time is short enough to observe fine structures in-vivo. Observation of the cerebral cortex of a mouse is demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell, 5th ed., (Garland Science, Taylor & Francis Group, New York, 2008).
    [PubMed]
  2. M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University Press, Cambridge, 1999) Sec. 8.6.2.
  3. L. Reimer, Transmission Electron Microscope, 3rd ed., (Springer-Verlag, Berlin Heidelberg, 1984, 1989, and 1993) Chap. 1.
  4. A. Ito and K. Shinohara, “Image blurring by thermal diffusion in the observation of hydrated biomolecules with soft X-ray microscopy,” Cell Struct. Funct. 17(4), 209–212 (1992).
    [CrossRef] [PubMed]
  5. For example, D. Attwood, Soft X-rays and extreme ultraviolet radiation, (Cambridge University Press, Cambridge, 2000) Chap. 9.
  6. W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
    [CrossRef] [PubMed]
  7. T. Aota and T. Tomie, “Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma,” Phys. Rev. Lett. 94(1), 015004 (2005).
    [CrossRef] [PubMed]
  8. C. A. Brewer, F. Brizuela, P. Wachulak, D. H. Martz, W. Chao, E. H. Anderson, D. T. Attwood, A. V. Vinogradov, I. A. Artyukov, A. G. Ponomareko, V. V. Kondratenko, M. C. Marconi, J. J. Rocca, and C. S. Menoni, “Single-shot extreme ultraviolet laser imaging of nanostructures with wavelength resolution,” Opt. Lett. 33(5), 518–520 (2008).
    [CrossRef] [PubMed]
  9. I. A. Artioukov, A. V. Vinogradov, V. E. Asadchikov, Yu. S. Kas’yanov, R. V. Serov, A. I. Fedorenko, V. V. Kondratenko, and S. A. Yulin, “Schwarzschild soft-x-ray microscope for imaging of nonradiating objects,” Opt. Lett. 20(24), 2451–2453 (1995).
    [CrossRef] [PubMed]
  10. M. Toyoda and M. Yamamoto, “Analytical designing of two-aspherical-mirror anastigmats permitting practical misalighnments in a soft-X-ray optics,” Opt. Rev. 13(3), 149–157 (2006).
    [CrossRef]
  11. When spatical resolution is given by Rayleigh’s criterion [2], the effective field of view provided by SOs is represented as (1.22λ/(P × NA))1/2 with the use of wavelength λ, coefficient of field curvature P, and numerical aperture NA [10]. Applying the sine condition to a high magnification Fresnel zone plate (FZP) imaging system that the spherical aberration is corrected, the outer zone width Δ of the FZP is represented as ymaxNA’2/2, where ymax is the maximum image height at image plane and NA’ is the numerical aperture of the FZP. The outer zone width Δ of FZP systems is also represented as λ/2NA’ at wavelength λ [4]. When the former two equations equal to each other, effective field of view of a high magnification FZP system is represented by a maximum image height and the notation is given by 8Δ3/λ2.
  12. For example, D. Attwood, Soft X-rays and extreme ultraviolet radiation, (Cambridge University Press, Cambridge, 2000) Chaps. 4, 6, and 10.
  13. T. Harada, Dr. of Eng. thesis, Tohoku University, 2007 (in Japanese).
  14. M. Toyoda, JPN Patent pending.
  15. M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
    [CrossRef]
  16. A custom product of Nikon Engineering Co., Ltd., n-eng.sales@nikon.co.jp or http://www.ave.nikon.co.jp/n-eng/
  17. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999) p.528.
  18. H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
    [CrossRef]
  19. The extinction coefficient values are computed from the values of atomic scattering factor and density by the use of the computer program IMD. The details of the computer program IMD is described in the paper:D. L. Windt, “IMD-Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
    [CrossRef]

2009 (2)

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson, “Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy,” Opt. Express 17(20), 17669–17677 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

M. Toyoda and M. Yamamoto, “Analytical designing of two-aspherical-mirror anastigmats permitting practical misalighnments in a soft-X-ray optics,” Opt. Rev. 13(3), 149–157 (2006).
[CrossRef]

2005 (1)

T. Aota and T. Tomie, “Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma,” Phys. Rev. Lett. 94(1), 015004 (2005).
[CrossRef] [PubMed]

2000 (1)

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

1998 (1)

The extinction coefficient values are computed from the values of atomic scattering factor and density by the use of the computer program IMD. The details of the computer program IMD is described in the paper:D. L. Windt, “IMD-Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[CrossRef]

1995 (1)

1992 (1)

A. Ito and K. Shinohara, “Image blurring by thermal diffusion in the observation of hydrated biomolecules with soft X-ray microscopy,” Cell Struct. Funct. 17(4), 209–212 (1992).
[CrossRef] [PubMed]

Anderson, E. H.

Aota, T.

T. Aota and T. Tomie, “Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma,” Phys. Rev. Lett. 94(1), 015004 (2005).
[CrossRef] [PubMed]

Artioukov, I. A.

Artyukov, I. A.

Asadchikov, V. E.

Attwood, D. T.

Brewer, C. A.

Brizuela, F.

Chao, W.

Ejima, T.

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Fedorenko, A. I.

Fischer, P.

Ito, A.

A. Ito and K. Shinohara, “Image blurring by thermal diffusion in the observation of hydrated biomolecules with soft X-ray microscopy,” Cell Struct. Funct. 17(4), 209–212 (1992).
[CrossRef] [PubMed]

Kas’yanov, Yu. S.

Kim, J.

Kondratenko, V. V.

Marconi, M. C.

Martz, D. H.

Menoni, C. S.

Mizutani, H.

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Momose, A.

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Ponomareko, A. G.

Rekawa, S.

Rocca, J. J.

Serov, R. V.

Shinohara, K.

A. Ito and K. Shinohara, “Image blurring by thermal diffusion in the observation of hydrated biomolecules with soft X-ray microscopy,” Cell Struct. Funct. 17(4), 209–212 (1992).
[CrossRef] [PubMed]

Shitani, Y.

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Takagi, T.

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Takeda, Y.

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Takeuchi, A.

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Tomie, T.

T. Aota and T. Tomie, “Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma,” Phys. Rev. Lett. 94(1), 015004 (2005).
[CrossRef] [PubMed]

Toyoda, M.

M. Toyoda and M. Yamamoto, “Analytical designing of two-aspherical-mirror anastigmats permitting practical misalighnments in a soft-X-ray optics,” Opt. Rev. 13(3), 149–157 (2006).
[CrossRef]

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Vinogradov, A. V.

Wachulak, P.

Watanabe, M.

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Windt, D. L.

The extinction coefficient values are computed from the values of atomic scattering factor and density by the use of the computer program IMD. The details of the computer program IMD is described in the paper:D. L. Windt, “IMD-Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[CrossRef]

Yamamoto, M.

M. Toyoda and M. Yamamoto, “Analytical designing of two-aspherical-mirror anastigmats permitting practical misalighnments in a soft-X-ray optics,” Opt. Rev. 13(3), 149–157 (2006).
[CrossRef]

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Yanagihara, M.

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Yulin, S. A.

Cell Struct. Funct. (1)

A. Ito and K. Shinohara, “Image blurring by thermal diffusion in the observation of hydrated biomolecules with soft X-ray microscopy,” Cell Struct. Funct. 17(4), 209–212 (1992).
[CrossRef] [PubMed]

Comput. Phys. (1)

The extinction coefficient values are computed from the values of atomic scattering factor and density by the use of the computer program IMD. The details of the computer program IMD is described in the paper:D. L. Windt, “IMD-Software for modeling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[CrossRef]

J. Phys. Conf. Series (1)

H. Mizutani, Y. Takeda, A. Momose, A. Takeuchi, and T. Takagi, “X-ray microscopy for neural circuit reconstruction,” J. Phys. Conf. Series 186, 012092 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated Schwarzschild objective: Imaging tests,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1926–1929 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

M. Toyoda and M. Yamamoto, “Analytical designing of two-aspherical-mirror anastigmats permitting practical misalighnments in a soft-X-ray optics,” Opt. Rev. 13(3), 149–157 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

T. Aota and T. Tomie, “Ultimate efficiency of extreme ultraviolet radiation from a laser-produced plasma,” Phys. Rev. Lett. 94(1), 015004 (2005).
[CrossRef] [PubMed]

Other (10)

A custom product of Nikon Engineering Co., Ltd., n-eng.sales@nikon.co.jp or http://www.ave.nikon.co.jp/n-eng/

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999) p.528.

For example, D. Attwood, Soft X-rays and extreme ultraviolet radiation, (Cambridge University Press, Cambridge, 2000) Chap. 9.

When spatical resolution is given by Rayleigh’s criterion [2], the effective field of view provided by SOs is represented as (1.22λ/(P × NA))1/2 with the use of wavelength λ, coefficient of field curvature P, and numerical aperture NA [10]. Applying the sine condition to a high magnification Fresnel zone plate (FZP) imaging system that the spherical aberration is corrected, the outer zone width Δ of the FZP is represented as ymaxNA’2/2, where ymax is the maximum image height at image plane and NA’ is the numerical aperture of the FZP. The outer zone width Δ of FZP systems is also represented as λ/2NA’ at wavelength λ [4]. When the former two equations equal to each other, effective field of view of a high magnification FZP system is represented by a maximum image height and the notation is given by 8Δ3/λ2.

For example, D. Attwood, Soft X-rays and extreme ultraviolet radiation, (Cambridge University Press, Cambridge, 2000) Chaps. 4, 6, and 10.

T. Harada, Dr. of Eng. thesis, Tohoku University, 2007 (in Japanese).

M. Toyoda, JPN Patent pending.

For example, B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell, 5th ed., (Garland Science, Taylor & Francis Group, New York, 2008).
[PubMed]

M. Born and E. Wolf, Principles of Optics, 7th ed., (Cambridge University Press, Cambridge, 1999) Sec. 8.6.2.

L. Reimer, Transmission Electron Microscope, 3rd ed., (Springer-Verlag, Berlin Heidelberg, 1984, 1989, and 1993) Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Layout of TXM-CUBE. The system is placed on an optical bed with EUV optics in a vacuum chamber.

Fig. 2
Fig. 2

Edge response of a nano-wire at the micro-grid. Inset EUV image is a micro-grid sample holder for TEM observation.

Fig. 3
Fig. 3

Wave front profile of the SO measured by the use of visible Fizeau interferometer.

Fig. 4
Fig. 4

EUV image of the cerebral cortex of a mouse. Scale bar is 50 μm.

Fig. 5
Fig. 5

(a) EUV image of the right column, middle row in Fig. 4(b) VI image of the cerebral cortex of a mouse dyed for VM images.

Metrics