Abstract

Using a four-mode theoretical analysis we show that highly efficient anti-Stokes conversion in waveguides is more challenging to realize in practice than previously thought. By including the dynamics of conversion to 2nd Stokes via stimulated Raman scattering and four-wave mixing, models predict only narrow, unstable regions of highly efficient anti-Stokes conversion. Experimental results of single-pass Raman conversion in confined capillary waveguides validate these predictions. This places more stringent conditions on systems that require highly efficient single-pass anti-Stokes conversion.

© 2010 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. J. Russel, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006).
    [CrossRef]
  2. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [CrossRef]
  3. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [CrossRef]
  4. F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
    [CrossRef]
  5. P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
    [CrossRef]
  6. S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
    [CrossRef]
  7. P. Rabinowitz, A. Kaldor, R. Brickman, and W. Schmidt, “Waveguide H2 Raman laser,” Appl. Opt. 15(9), 2005–2006 (1976).
    [CrossRef]
  8. D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
    [CrossRef]
  9. A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
    [CrossRef]
  10. N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
    [CrossRef]
  11. L. Schoulepnikoff and V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” JOSA B 14(1), 62–75 (1997).
    [CrossRef]
  12. B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. B 7(2), 234–238 (1990).
    [CrossRef]
  13. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
    [CrossRef]
  14. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

2009 (1)

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
[CrossRef]

2008 (1)

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
[CrossRef]

2007 (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[CrossRef]

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

2006 (1)

2004 (2)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

1997 (1)

L. Schoulepnikoff and V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” JOSA B 14(1), 62–75 (1997).
[CrossRef]

1990 (1)

B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. B 7(2), 234–238 (1990).
[CrossRef]

1986 (1)

D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
[CrossRef]

1976 (1)

1965 (1)

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Abdolvand, A.

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
[CrossRef]

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Bloembergen, N.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Bobbs, B.

B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. B 7(2), 234–238 (1990).
[CrossRef]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Brickman, R.

Carlsten, J. L.

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Debaes, C.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

Hanna, D.

D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
[CrossRef]

Imasaka, T.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
[CrossRef]

Izaki, H.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
[CrossRef]

Kaldor, A.

Knight, J. C.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Meng, L. S.

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

Mitev, V.

L. Schoulepnikoff and V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” JOSA B 14(1), 62–75 (1997).
[CrossRef]

Murphy, S. K.

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

Muys, P.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

Nazarkin, A.

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
[CrossRef]

Pointer, D.

D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
[CrossRef]

Pratt, D.

D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
[CrossRef]

Rabinowitz, P.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

Roos, P. A.

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

Russel, P. S. J.

Russell, P. St. J.

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

Schmidt, W.

Schoulepnikoff, L.

L. Schoulepnikoff and V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” JOSA B 14(1), 62–75 (1997).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Thienpont, H.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

Vermeulen, N.

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

Warner, C.

B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. B 7(2), 234–238 (1990).
[CrossRef]

Zaitsu, S.

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783 (1964).

J. Lightwave Technol. (1)

J. Opt. Soc. B (2)

B. Bobbs and C. Warner, “Raman-resonant four-wave mixing and energy transfer,” J. Opt. Soc. B 7(2), 234–238 (1990).
[CrossRef]

P. A. Roos, L. S. Meng, S. K. Murphy, and J. L. Carlsten, “Approaching quantum-limited cw anti-Stokes conversion through cavity-enhanced Raman-resonant four-wave mixing,” J. Opt. Soc. B 21(2), 357–363 (2004).
[CrossRef]

J. Quant. Electron. (1)

D. Hanna, D. Pointer, and D. Pratt, “Stimulated Raman Scattering of Picosecond Light Pulses in Hydrogen,” J. Quant. Electron. 22(2), 332–336 (1986).
[CrossRef]

JOSA B (1)

L. Schoulepnikoff and V. Mitev, “Numerical method for the modeling of high-gain single-pass cascade stimulated Raman scattering in gases,” JOSA B 14(1), 62–75 (1997).
[CrossRef]

Phys. Rev. (2)

A. Nazarkin, A. Abdolvand, and P. St. J. Russell, “Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. 79(3), 031805 (2009).
[CrossRef]

Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965).
[CrossRef]

Phys. Rev. Lett. (4)

N. Vermeulen, C. Debaes, P. Muys, and H. Thienpont, “Mitigating heat dissipation in Raman lasers using coherent anti-stokes Raman scattering,” Phys. Rev. Lett. 99(9), 093903 (2007).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 99(14), 143903 (2007).
[CrossRef]

S. Zaitsu, H. Izaki, and T. Imasaka, “Phase-matched Raman-resonant four-wave mixing in a dispersion-compensated high-finesse optical cavity,” Phys. Rev. Lett. 100(7), 073901 (2008).
[CrossRef]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[CrossRef]

Science (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics