Abstract

Efficient room-temperature luminescence at optical telecommunication wavelengths and originating from direct band-to-band recombination has been observed in tensile-strained germanium nanocrystals synthesized by mechanical grinding techniques. Selected area electron diffraction, micro-Raman and optical-absorption spectroscopy measurements indicate high tensile-strains while combined photoluminescence spectroscopy, excitation-power evolution and time-resolved measurements suggest direct band-to-band recombination. Such band-engineered germanium nanocrystals offer great possibilities for silicon-photonics integration due to their superb light-emission properties, facile fabrication and compatibility with standard microelectronic processes.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
    [CrossRef]
  2. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
    [CrossRef] [PubMed]
  3. W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
    [CrossRef] [PubMed]
  4. Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
    [CrossRef]
  5. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
    [CrossRef] [PubMed]
  6. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5269 .
    [CrossRef] [PubMed]
  7. H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
    [CrossRef]
  8. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
    [CrossRef]
  9. S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
    [CrossRef] [PubMed]
  10. E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14099 .
    [CrossRef] [PubMed]
  11. D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
    [CrossRef]
  12. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9203 .
    [CrossRef] [PubMed]
  13. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11272 .
    [CrossRef] [PubMed]
  14. M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
    [CrossRef]
  15. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
    [CrossRef]
  16. W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
    [CrossRef]
  17. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
    [CrossRef]
  18. Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
    [CrossRef]
  19. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
    [CrossRef]
  20. D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
    [CrossRef]
  21. S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996).
    [CrossRef]
  22. G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
    [CrossRef]
  23. H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
    [CrossRef]
  24. Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005).
    [CrossRef]
  25. H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
    [CrossRef]
  26. E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
    [CrossRef]
  27. S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
    [CrossRef]
  28. N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
    [CrossRef]
  29. P. K. Giri, “Strain analysis on freestanding germanium nanocrystals,” J. Phys. D Appl. Phys. 42(24), 245402 (2009).
    [CrossRef]
  30. D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
    [CrossRef]
  31. P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
    [CrossRef]
  32. M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
    [CrossRef]
  33. G. F. Goya, “Nanocrystalline CuFe2O4 obtained by mechanical grinding,” J. Mater. Sci. Lett. 16(7), 563–565 (1997).
    [CrossRef]
  34. C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992).
    [CrossRef]
  35. V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
    [CrossRef]
  36. Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13(6), 1833–1838 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1833 .
    [CrossRef] [PubMed]
  37. G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009).
    [CrossRef]
  38. A. Paul, M. Luisier, R. Kim, M. McLennan, M. Lundstrom, and G. Klimeck, “Band Structure Lab” (2006), http://hdl.handle.net/ 10254/nanohub-r1308.6 .
  39. G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).
  40. X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
    [CrossRef] [PubMed]
  41. J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
    [CrossRef]
  42. I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
    [CrossRef]
  43. T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
    [CrossRef]
  44. J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
    [CrossRef]
  45. N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
    [CrossRef]
  46. S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
    [CrossRef]
  47. S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
    [CrossRef]
  48. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
    [CrossRef]

2009 (5)

D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
[CrossRef]

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

P. K. Giri, “Strain analysis on freestanding germanium nanocrystals,” J. Phys. D Appl. Phys. 42(24), 245402 (2009).
[CrossRef]

G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009).
[CrossRef]

X. Sun, J. Liu, L. C. Kimerling, and J. Michel, “Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes,” Opt. Lett. 34(8), 1198–1200 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

2007 (3)

2006 (3)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9203 .
[CrossRef] [PubMed]

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

2005 (7)

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
[CrossRef]

Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005).
[CrossRef]

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Q. Li, C. Liu, Z. Liu, and Q. Gong, “Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals,” Opt. Express 13(6), 1833–1838 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1833 .
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

2004 (3)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-21-5269 .
[CrossRef] [PubMed]

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

2003 (1)

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

2002 (2)

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

2001 (1)

T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
[CrossRef]

2000 (4)

J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
[CrossRef]

N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

1999 (1)

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

1998 (1)

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

1997 (1)

G. F. Goya, “Nanocrystalline CuFe2O4 obtained by mechanical grinding,” J. Mater. Sci. Lett. 16(7), 563–565 (1997).
[CrossRef]

1996 (3)

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996).
[CrossRef]

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

1995 (2)

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
[CrossRef]

1994 (1)

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

1993 (2)

W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

1992 (2)

C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992).
[CrossRef]

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

1991 (2)

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

1985 (1)

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Agudo, P.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

Ainspan, H. A.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Axmann, A.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Aziz, M. J.

D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
[CrossRef]

Baribeau, J.

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
[CrossRef]

Baribeau, J.-M.

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

Bimberg, D.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Bläsing, J.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Bowers, J. E.

Boyraz, O.

Brus, L.

W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Camassel, J.

J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
[CrossRef]

Canham, L.

A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

Cao, C. W.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Capasso, F.

D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
[CrossRef]

Capelli, G.

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

Carabias, I.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

Caragianis, C.

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Chang, H. T.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Chen, P. S.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Cheng, S. L.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Cho, Y. S.

C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992).
[CrossRef]

Choi, W. K.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Christen, J.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Chu, J. O.

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

Cloutier, S. G.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
[CrossRef]

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Cohen, O.

Coppinger, M.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Cullis, A.

A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

Dacol, F.

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

Dal Negro, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

de la Venta, J.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

De Wolf, I.

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

Di Gaspare, L.

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

Dietrich, B.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Eisele, K.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Enner, H.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Evangelisti, F.

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

Falkovsky, L. A.

J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Fang, A. W.

Franzò, G.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Friedman, D. J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Fujii, M.

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

Gaffet, E.

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Ge, M. Y.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Giri, P. K.

P. K. Giri, “Strain analysis on freestanding germanium nanocrystals,” J. Phys. D Appl. Phys. 42(24), 245402 (2009).
[CrossRef]

Goasguen, S.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Gong, Q.

Goya, G. F.

G. F. Goya, “Nanocrystalline CuFe2O4 obtained by mechanical grinding,” J. Mater. Sci. Lett. 16(7), 563–565 (1997).
[CrossRef]

Gu, X.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Guico, R. S.

S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
[CrossRef]

Hadjipanayis, G.

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Hayashi, S.

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

Haydl, W.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Hernando, A.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Hsu, C.-H.

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

Ishahara, T.

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Jalali, B.

Jiang, J. Z.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Jones, R.

Kajiyama, K.

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

Kalkman, J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Kamenev, B. V.

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

Kanemitsu, Y.

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996).
[CrossRef]

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Karavanskii, V. A.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

Kartopu, G.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

Kim, T. Y.

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Kimerling, L. C.

Kippenberg, T. J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Klimeck, G.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Koch, C. C.

C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992).
[CrossRef]

Koch, T. L.

Kolodzey, J.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Korkusinski, M.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Kossyrev, P. A.

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Kulik, T.

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Kushida, T.

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

Kwark, Y. H.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Lee, C.-H.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Lee, M. H.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Lee, S.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Lee, S. W.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Lengsfdeld, P.

N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
[CrossRef]

Li, Q.

Li, W. S.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Liu, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Liu, C.

Liu, C. W.

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Liu, J.

Liu, Z.

Lockwood, D. J.

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
[CrossRef]

Lopez, M.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Lu, Z.

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
[CrossRef]

Maeda, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Marin, P.

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Masuda, K.

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

Masumoto, Y.

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Mazzoleni, C.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Meghelli, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Michel, J.

Min, B.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Mooney, P. M.

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

Muller, J.-C.

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Nataraj, L.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Ng, S. P.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Ng, V.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Nickel, N. H.

N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Novikov, A. V.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Okamoto, S.

S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996).
[CrossRef]

Opila, R.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Paine, D. C.

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Palange, E.

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

Pan, D.

Paniccia, M.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Paniccia, M. J.

Park, H.

Parker, B. D.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Pavesi, L.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Planes, N.

J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
[CrossRef]

Polman, A.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Pomrenke, G.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Priolo, F.

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Recht, D.

D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
[CrossRef]

Rehspringer, J.-L.

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Ritter, M. B.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Rotem, E.

Rylyakov, A. V.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Saied, F.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Sapelkin, A. V.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

Sayeed, M.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Schneider, J.

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

Serincan, U.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

Shainline, J. M.

Shaleev, M. V.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Shan, L.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Shen, Z. X.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Shi, H.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Shigesato, Y.

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Sieber, I.

N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
[CrossRef]

Slaoui, A.

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Sorna, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Soyuer, M.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Sugiyama, N.

T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
[CrossRef]

Sun, X.

Sustersic, N.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Svrcek, V.

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

Szajowski, P. F.

W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Takagi, S.

T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
[CrossRef]

Takeoka, S.

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

Tan, G. L.

G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009).
[CrossRef]

Tezuka, T.

T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
[CrossRef]

Thio, H. H.

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

Tsang, J. C.

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

Tsukamoto, N.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Tsybeskov, L.

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

Tu, H.

Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005).
[CrossRef]

Turan, R.

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

Uto, H.

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

Vahala, K. J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Varga, L. K.

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

Veit, P.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Wang, F.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Wang, L. N.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Wang, X.

J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, “Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si,” Opt. Express 15(18), 11272–11277 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11272 .
[CrossRef] [PubMed]

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Wang, Y. W.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Weiland, C.

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Wilson, W. L.

W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Wu, H. P.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Xiao, Q.

Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005).
[CrossRef]

Xie, S.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Xu, H.

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

Xu, J.

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

Xu, J. M.

E. Rotem, J. M. Shainline, and J. M. Xu, “Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth,” Opt. Express 15(21), 14099–14106 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14099 .
[CrossRef] [PubMed]

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
[CrossRef]

Yamamoto, K.

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

Yamamoto, M.

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

Yang, H.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Yang, J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Yang, L.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Yao, X.

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

Yazawa, Y.

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Yu, X. F.

G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009).
[CrossRef]

Zacharias, M.

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Zeng, Y. W.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Zhang, G. Q.

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Zier, S. J.

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

Adv. Mater. (1)

S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, and J. Xu, “Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking,” Adv. Mater. 18, 841–844 (2006).
[CrossRef]

Appl. Phys. Lett. (11)

T. Tezuka, N. Sugiyama, and S. Takagi, “Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction,” Appl. Phys. Lett. 79(12), 1798–1800 (2001).
[CrossRef]

S. G. Cloutier, R. S. Guico, and J. M. Xu, “Phonon localization in periodic uniaxially nanostructured silicon,” Appl. Phys. Lett. 87(22), 222104 (2005).
[CrossRef]

H. Enner, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46(4), 381–383 (1985).
[CrossRef]

D. Recht, F. Capasso, and M. J. Aziz, “On the temperature dependence of point-defect-mediated luminescence in silicon,” Appl. Phys. Lett. 94(25), 251113 (2009).
[CrossRef]

Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett. 59(24), 3168–3170 (1991).
[CrossRef]

Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett. 61(18), 2187–2190 (1992).
[CrossRef]

D. C. Paine, C. Caragianis, T. Y. Kim, Y. Shigesato, and T. Ishahara, “Visible photoluminescence from nanocrystalline Ge formed by H2 reduction of Si0.6Ge0.4O2,” Appl. Phys. Lett. 62(22), 2842–2844 (1993).
[CrossRef]

Q. Xiao and H. Tu, “Ge–Si system nanoclusters in Si matrix formed by solid-phase epitaxy,” Appl. Phys. Lett. 86(20), 201914 (2005).
[CrossRef]

H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu, and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett. 81(27), 5144–5146 (2002).
[CrossRef]

E. Palange, G. Capelli, L. Di Gaspare, and F. Evangelisti, “Atomic force microscopy and photoluminescence study of Ge layers and self-organized Ge quantum dots on Si(100),” Appl. Phys. Lett. 68(21), 2982–2984 (1996).
[CrossRef]

N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M. V. Shaleev, A. V. Novikov, R. Opila, S. G. Cloutier, and J. Kolodzey, “High power N-face GaN high electron mobility transistors grown by molecular beam epitaxy with optimization of AlN nucleation,” Appl. Phys. Lett. 94, 183103 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

S. W. Lee, P. S. Chen, S. L. Cheng, M. H. Lee, H. T. Chang, C.-H. Lee, and C. W. Liu, “Modified growth of Ge quantum dots using C2H4 mediation by ultra-high vacuum chemical vapor deposition,” Appl. Surf. Sci. 254(19), 6261–6264 (2008).
[CrossRef]

Comput. Model. Eng. Sci. (1)

G. Klimeck, M. Korkusinski, F. Saied, H. Xu, S. Lee, M. Sayeed, and S. Goasguen, “Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots,” Comput. Model. Eng. Sci. 3, 601–642 (2002).

IBM J. Res. Develop. (1)

D. J. Friedman, M. Meghelli, B. D. Parker, J. Yang, H. A. Ainspan, A. V. Rylyakov, Y. H. Kwark, M. B. Ritter, L. Shan, S. J. Zier, M. Sorna, and M. Soyuer, “SiGe BiCMOS integrated circuits for high-speed serial communication links,” IBM J. Res. Develop. 47, 259–282 (2003).
[CrossRef]

J. Alloy. Comp. (1)

M. Lopez, P. Marin, P. Agudo, I. Carabias, J. de la Venta, and A. Hernando, “Nanocrystalline FeSiBNbCu alloys: Differences between mechanical and thermal crystallization process in amorphous precursors,” J. Alloy. Comp. 434–435, 199–202 (2007).
[CrossRef]

J. Appl. Phys. (3)

G. Kartopu, A. V. Sapelkin, V. A. Karavanskii, U. Serincan, and R. Turan, “Structural and optical properties of porous nanocrystalline Ge,” J. Appl. Phys. 103(11), 113518 (2008).
[CrossRef]

W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen, and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys. 86(3), 1398–1403 (1999).
[CrossRef]

J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of alloy composition and strain in thin GexSi1−x layers,” J. Appl. Phys. 75(12), 8098–8108 (1994).
[CrossRef]

J. Cryst. Growth (1)

V. Svrcek, J.-L. Rehspringer, E. Gaffet, A. Slaoui, and J.-C. Muller, “Unaggregated silicon nanocrystals obtained by ball milling,” J. Cryst. Growth 275(3-4), 589–597 (2005).
[CrossRef]

J. Lumin. (1)

Y. Kanemitsu, K. Masuda, M. Yamamoto, K. Kajiyama, and T. Kushida, “Near-infrared photoluminescence from Ge nanocrystals in SiO2 matrices,” J. Lumin. 87–89, 457–459 (2000).
[CrossRef]

J. Magn. Magn. Mater. (1)

P. Marin, A. Hernando, M. Lopez, T. Kulik, L. K. Varga, and G. Hadjipanayis, “Influence of mechanical grinding on the structure and magnetic properties of FeCuNbSiB material,” J. Magn. Magn. Mater. 272–276, E1131–E1133 (2004).
[CrossRef]

J. Mater. Sci. Lett. (1)

G. F. Goya, “Nanocrystalline CuFe2O4 obtained by mechanical grinding,” J. Mater. Sci. Lett. 16(7), 563–565 (1997).
[CrossRef]

J. Phys. Chem. C (1)

G. L. Tan and X. F. Yu, “Capping the Ball-Milled CdSe Nanocrystals for Light Excitation,” J. Phys. Chem. C 113(20), 8724–8729 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

P. K. Giri, “Strain analysis on freestanding germanium nanocrystals,” J. Phys. D Appl. Phys. 42(24), 245402 (2009).
[CrossRef]

Nanostructured Materials (1)

C. C. Koch and Y. S. Cho, “Nanocrystals by high energy ball milling,” Nanostructured Materials 1(3), 207–212 (1992).
[CrossRef]

Nanotechnology (1)

H. P. Wu, M. Y. Ge, C. W. Cao, Y. W. Wang, Y. W. Zeng, L. N. Wang, G. Q. Zhang, and J. Z. Jiang, “Blue emission of Ge nanocrystals prepared by thermal decomposition,” Nanotechnology 17(21), 5339–5343 (2006).
[CrossRef]

Nat. Mater. (1)

S. G. Cloutier, P. A. Kossyrev, and J. M. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4(12), 887–891 (2005).
[CrossRef] [PubMed]

Nature (4)

A. Cullis and L. Canham, “Visible light emission due to quantum size effects in highly porous crystalline silicon,” Nature 353(6342), 335–338 (1991).
[CrossRef]

L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408(6811), 440–444 (2000).
[CrossRef] [PubMed]

Z. Lu, D. J. Lockwood, and J. Baribeau, “Quantum confinement and light emission in SiO2/Si superlattices,” Nature 378(6554), 258–260 (1995).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, “An all-silicon Raman laser,” Nature 433(7023), 292–294 (2005).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Phys. Rev. B (5)

S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, “Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices,” Phys. Rev. B 58(12), 7921–7925 (1998).
[CrossRef]

S. Okamoto and Y. Kanemitsu, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 54(23), 16421–16424 (1996).
[CrossRef]

J. Camassel, L. A. Falkovsky, and N. Planes, “Photoluminescence properties of surface-oxidized Ge nanocrystals: Surface localization of excitons,” Phys. Rev. B 63, 035309 (2000).
[CrossRef]

N. H. Nickel, P. Lengsfdeld, and I. Sieber, “Raman spectroscopy of heavily doped polycrystalline silicon thin films,” Phys. Rev. B 61(23), 15558–15561 (2000).
[CrossRef]

B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. J. Lockwood, “Coexistence of fast and slow luminescence in three-dimensional Si/Si1−xGex nanostructures,” Phys. Rev. B 72(19), 193306 (2005).
[CrossRef]

Science (1)

W. L. Wilson, P. F. Szajowski, and L. Brus, “Measurements of alloy composition and strain in thin GexSi1−x layers,” Science 262, 1242–1244 (1993).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

I. De Wolf, “Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits,” Semicond. Sci. Technol. 11(2), 139–154 (1996).
[CrossRef]

Superlattices Microstruct. (1)

M. Zacharias, J. Bläsing, J. Christen, P. Veit, B. Dietrich, and D. Bimberg, “Formation of Ge nanocrystals with sharp size distribution: structural and optical characterization,” Superlattices Microstruct. 18(2), 139–146 (1995).
[CrossRef]

Other (1)

A. Paul, M. Luisier, R. Kim, M. McLennan, M. Lundstrom, and G. Klimeck, “Band Structure Lab” (2006), http://hdl.handle.net/ 10254/nanohub-r1308.6 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The nanocrystalline powder synthesized by mechanical grinding and shown in the inset can also be pressed into laminates using a 12-ton press. (b,c) TEM micrographs of the Ge nanocrystals. (d) Typical selected area electron diffraction (SAED) patterns show the sound crystalline structure of the nanocrystals. The lattice constants measured from several electron diffraction patterns suggest a 2.2 ± 1.1% tensile strain compared to the bulk. (e) HRTEM micrograph showing the strain-induced deformations seen in the largest Ge nanocrystals.

Fig. 2
Fig. 2

(a) Electronic bandstructure calculated for fully-relaxed and 0.5% tensile-strained bulk Ge [38,39]. (b) Estimate of the donor concentration required to fill the L-valley as a function of the level of tensile-strains for the biaxial and hydrostatic cases obtained using a first-order band-narrowing model.

Fig. 3
Fig. 3

(a) Raman spectroscopy of the Ge-Ge vibration measured for the germanium nanocrystals and the bulk material they were synthesized from. (b) Ge-Ge vibration peak shift and full-width at half-maximum (FWHM) for the nanocrystals and the bulk Ge measured at 5,000, 10,000 and 15,000 W/cm2 excitation intensities.

Fig. 4
Fig. 4

Optical absorption spectroscopy measurements showing the enhanced low-energy tail for the Ge nanocrystals compared with the bulk.

Fig. 5
Fig. 5

(a) Photoluminescence spectroscopy of the Ge nanocrystals (○) and bulk Ge (●) at room temperature. (b) Ge nanocrystals room-temperature integral photoluminescence intensity as a function of the excitation intensity. (c) Transient-photoluminescence measurements. We measured the detection limit of the entire system and found it better than 25 μs (highlighted region). The plain lines indicate the fits of the photoluminescence transients.

Metrics