Abstract

Different capping of quantum dot (QD) materials is known to produce different degrees of intermixing during a post-growth thermal annealing process. We report a study of the effect of different degrees of intermixing on modulation beryllium doped quantum dot superluminescent light emitting diodes (QD-SLEDs). The intermixed QD-SLEDs show high device performance whilst achieving a large central emission wavelength shift of ~100nm compared to the as-grown device. The evolution of the emission spectra and power with drive current suggest a transition from QD-like to QW-like behavior with increasing degree of intermixing. A selective area intermixed QD-SLED is demonstrated, and with optimized differential intermixing, such structures should allow ultra-broadband sources to be realized.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
    [CrossRef]
  2. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
    [CrossRef]
  3. M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
    [CrossRef]
  4. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
    [CrossRef]
  5. H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
    [CrossRef]
  6. Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
    [CrossRef]
  7. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
    [CrossRef]
  8. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum dot superluminescent light emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
    [CrossRef]
  9. C. L. Walker, A. C. Bryce, and J. H. Marsh, “Non absorbing mirror laser with improved catastrophic optical damage level”, Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, 2, 643 – 644, (2002)
  10. S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
    [CrossRef]
  11. H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
    [CrossRef]
  12. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
    [CrossRef] [PubMed]
  13. Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
    [CrossRef]
  14. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
    [CrossRef] [PubMed]
  15. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
    [CrossRef]
  16. B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
    [CrossRef]
  17. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
    [CrossRef] [PubMed]
  18. J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
    [CrossRef]
  19. C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
    [CrossRef]
  20. T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
    [CrossRef]
  21. P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
    [CrossRef]
  22. H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
    [CrossRef]
  23. L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
    [CrossRef]
  24. http://www.denselight.com/tech.htm

2010 (1)

2009 (2)

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

2008 (3)

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
[CrossRef]

2007 (7)

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
[CrossRef]

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

2006 (1)

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

2004 (3)

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

2003 (2)

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

1999 (1)

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

1997 (1)

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Ayling, S. G.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Bardella, P.

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

Beattie, M. D.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Bryce, A. C.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Buda, M.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

Chan, Y. C.

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Chang, W. H.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Chia, C. K.

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

Chua, S. J.

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

Dang, G. T.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Dawson, M. D.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Dimas, C. E.

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Ding, D.

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Ding, Y.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Djie, H. S.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Dong, J. R.

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

Du, S.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

Fang, X. M.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Fastenau, J. M.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Fiore, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Fu, L.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Gal, M.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Gong, Q.

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Groom, K. M.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Han, I. K.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
[CrossRef]

Helmy, A. S.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Hogg, R. A.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum dot superluminescent light emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Hogg, R.A.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
[CrossRef]

Hopkinson, M.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Hwang, J. C. M.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Jagadish, C.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Jiang, Q.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
[CrossRef]

Jin, P.

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Kim, G.

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

Kim, K.

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

Kovsh, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Krestnikov, I.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Lam, Y. L.

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Lee, J. I.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
[CrossRef]

Leem, Y. A.

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Lever, P.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Li, L. H.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Liu, A. W. K.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Liu, F. Q.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Liu, H. Y.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Luxmoore, I. J.

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

Lv, X. Q.

Macaluso, R.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Markus, A.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Marsh, J. H.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Mash, J. H.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Mcilvaney, K.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Mikhrin, S.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Mokkapati, S.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

Montrosset, I.

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Nilsen, T. A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Occhi, L.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Ong, T. K.

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Ooi, B. S.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Ray, S. K.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

Reece, P.

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Riechert, H.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Robert, F.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Roberts, J. S.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Rossetti, M.

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Song, J. H.

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

Street, M. W.

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

Sun, H. D.

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

Sun, Z.

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Sun, Zh.

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Tan, H. H.

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Teo, S. L.

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

Velez, C.

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

Wang, D.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Wang, D. N.

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

Wang, Y.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Wang, Z. G.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum dot superluminescent light emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Wu, Y.

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Xu, B.

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Yin, M.

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Yoo, Y. C.

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
[CrossRef]

Yu, Z.

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Zhang, Z. Y.

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
[CrossRef]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum dot superluminescent light emitting diodes,” Adv. Opt. Photon. 2(2), 201–228 (2010).
[CrossRef]

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett. 33(11), 1210–1212 (2008).
[CrossRef] [PubMed]

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

Zhou, W.

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (3)

Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable Interband and Intersubbnad transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by post-growth annealing process,” Appl. Phys. Lett. 93(7), 071111 (2008).
[CrossRef]

C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, “Ultra-wide band quantum dot light emitting device by post- fabrication laser annealing,” Appl. Phys. Lett. 90(6), 061101 (2007).
[CrossRef]

L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAsÕGaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett. 82(16), 2613–2615 (2003).
[CrossRef]

Electron. Lett. (2)

Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R.A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett. 46(4), 295-296 (2010).
[CrossRef]

Y. C. Yoo, I. K. Han, and J. I. Lee, “High power broadband superluminescent diodes with chirped multiple quantum dots,” Electron. Lett. 43(19), 1045–1046 (2007).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Rossetti, L. H. Li, A. Markus, A. Fiore, L. Occhi, C. Velez, S. Mikhrin, I. Krestnikov, and A. Kovsh, “Characterization and modeling of broad spectrum InAs-GaAs quantum-dot superluminescent diodes emitting at 1.2-1.3 μm,” IEEE J. Quantum Electron. 43(8), 676–686 (2007).
[CrossRef]

B. S. Ooi, K. Mcilvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Mash, and J. S. Roberts, “Selective quantum-well intermixing in GaAs/AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. 33(10), 1784–1793 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

P. Bardella, M. Rossetti, and I. Montrosset, “Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 785–791 (2009).
[CrossRef]

H. S. Djie, Y. Wang, Y. Ding, D. Wang, J. C. M. Hwang, X. M. Fang, Y. Wu, J. M. Fastenau, A. W. K. Liu, G. T. Dang, W. H. Chang, and B. S. Ooi, “Quantum dash intermixing,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1239–1249 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. H. Song, K. Kim, Y. A. Leem, and G. Kim, “High-Power Broadband Superluminescent Diode Using Selective Area Growth at 1.5 μ m Wavelength,” IEEE Photon. Technol. Lett. 19(19), 1415–1417 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3-μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19(7), 501–503 (2007).
[CrossRef]

Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Zh. Sun, and F. Q. Liu, “High performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett. 16(1), 27–29 (2004).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, “Broad-band superluminescent light-emitting diodes incorporating quantum dots in compositionally modulated quantum wells,” IEEE Photon. Technol. Lett. 18(1), 58–60 (2006).
[CrossRef]

IEEE Sens. J. (1)

H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, “InGaAs/GaAs quantum-dot superluminescent diode for optical sensor and imaging,” IEEE Sens. J. 7(2), 251–257 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. D. Sun, R. Macaluso, M. D. Dawson, F. Robert, A. C. Bryce, J. H. Marsh, and H. Riechert, “Characterization of selective quantum well intermixing in 1.3 μm GaInNAs/GaAs structures,” J. Appl. Phys. 94(3), 1550–1556 (2003).
[CrossRef]

J. Biomed. Opt. (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9(1), 47–74 (2004).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

T. K. Ong, M. Yin, Z. Yu, Y. C. Chan, and Y. L. Lam, “High performance quantum well intermixed superluminescent diodes,” Meas. Sci. Technol. 15(8), 1591–1595 (2004).
[CrossRef]

Nano. Res. Lett. (1)

S. Mokkapati, S. Du, M. Buda, L. Fu, H. H. Tan, and C. Jagadish, “Multiple wavelength InGaAs quantum dot lasers using ion implantation induced intermixing,” Nano. Res. Lett. 2(11), 550–553 (2007).
[CrossRef]

Nanotechnology (1)

Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type–doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology 20(5), 055204 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Z. Sun, D. Ding, Q. Gong, W. Zhou, B. Xu, and Z. G. Wang, “Quantum-dot superluminescent diode: A proposal for an ultra-wide output spectrum,” Opt. Quantum Electron. 31(12), 1235–1246 (1999).
[CrossRef]

Other (2)

http://www.denselight.com/tech.htm

C. L. Walker, A. C. Bryce, and J. H. Marsh, “Non absorbing mirror laser with improved catastrophic optical damage level”, Lasers and Electro-Optics Society, 2002. LEOS 2002. The 15th Annual Meeting of the IEEE, 2, 643 – 644, (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Room temperature PL spectra of the as-grown QD sample and annealed QD samples by using different annealing temperature, different time, and different caps during annealing process.

Fig. 3
Fig. 3

Electroluminescence spectra as a function of drive currents of as-grown QD-SLED, 700 °C intermixed QD-SLED with GaAs proximity cap and 700 °C intermixed QD-SLED with SiO2 cap during annealing process.

Fig. 2
Fig. 2

Light-injection current curves of as-grown QD-SLED, 700 °C intermixed QD-SLED with GaAs proximity cap and 700 °C intermixed QD-SLED with SiO2 cap during annealing process.

Fig. 4
Fig. 4

(a). Schematic device structure of the selective area intermixed QD-SLED;(b). L-I curves of the selective area intermixed QD-SLED measured from front and back facet, respectively. Inset: the corresponding spectra of the device at 3A.

Metrics