Abstract

We propose and show that for coupling modulated lasers (CMLs), in which the output coupler is modulated rather than the pump rate, the conventional relaxation resonance frequency limit to the laser modulation bandwidth can be circumvented. The modulation response is limited only by the coupler. Although CMLs are best suited to microcavities, as a proof-of-principle, a coupling-modulated erbium-doped fiber laser is modulated at 1 Gb/s, over 10000 times its relaxation resonance frequency.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
    [CrossRef]
  2. I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
    [CrossRef]
  3. R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
    [CrossRef]
  4. D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
    [CrossRef]
  5. S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
    [CrossRef]
  6. S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
    [CrossRef]
  7. M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
    [CrossRef]
  8. I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V A: Components and Subsystems. Ch. 3 and 6 (Elsevier, 2008).
  9. R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976).
    [CrossRef]
  10. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
    [CrossRef]
  11. D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999).
    [CrossRef]
  12. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
    [CrossRef]
  13. L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995).
  14. A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2007).
  15. A. N. Pisarchik, A. V. Kir'yanov, Y. O. Barmenkov, and R. Jaimes-Reategui, “Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment,” J. Opt. Soc. Am. B 22(10), 2107–2114 (2005).
    [CrossRef]
  16. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27(17), 3800–3811 (2009).
    [CrossRef]
  17. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
    [CrossRef] [PubMed]
  18. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  19. W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005).
    [CrossRef] [PubMed]
  20. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007).
    [CrossRef] [PubMed]
  21. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
    [CrossRef]
  22. F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
    [CrossRef]
  23. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20(8), 875–877 (1995).
    [CrossRef] [PubMed]
  24. Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
    [CrossRef]
  25. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  26. W. D. Sacher and J. K. S. Poon, “Microring quadrature modulators,” Opt. Lett. 34(24), 3878–3880 (2009).
    [CrossRef] [PubMed]
  27. I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V B: Systems and Networks Ch. 2 (Elsevier, 2008).

2009 (2)

2008 (1)

2007 (1)

2006 (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

2005 (4)

A. N. Pisarchik, A. V. Kir'yanov, Y. O. Barmenkov, and R. Jaimes-Reategui, “Dynamics of an erbium-doped fiber laser with pump modulation: theory and experiment,” J. Opt. Soc. Am. B 22(10), 2107–2114 (2005).
[CrossRef]

W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005).
[CrossRef] [PubMed]

S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

2004 (1)

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (2)

D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

2001 (1)

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

1999 (1)

D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999).
[CrossRef]

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

1996 (1)

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

1995 (1)

1992 (1)

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

1988 (2)

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

1984 (1)

Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
[CrossRef]

1976 (1)

R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976).
[CrossRef]

Altug, H.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Arakawa, Y.

Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
[CrossRef]

Barmenkov, Y. O.

Bhattachary, P.

S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Bowers, J. E.

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Cheng, Y.

Coldren, L. A.

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

Dalton, L. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Deppe, D. G.

D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
[CrossRef]

D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999).
[CrossRef]

Derose, G. A.

Englund, D.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Fathpour, S.

S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
[CrossRef]

Feinberg, J.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Fiol, G.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Fukushima, T.

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Geels, R. S.

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Green, W. M. J.

Haldar, M. K.

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

Harris, J. S.

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

Havstad, S. A.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Huang, H.

D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
[CrossRef]

D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999).
[CrossRef]

Iga, K.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

Ishikawa, M.

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Jacob, A.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Jaimes-Reategui, R.

Kan, Y.

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

Keever, M.

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

Kim, S. M.

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

Kir'yanov, A. V.

Kobayashi, K.

R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976).
[CrossRef]

Kovsh, A. R.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Koyama, F.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6(1), 87–93 (1988).
[CrossRef]

Kringlebotn, J. T.

Kuntz, M.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Laming, R. I.

Lämmlin, M.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976).
[CrossRef]

Lee, R. K.

Li, L.

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

Loh, W. H.

Mendis, F. V. C.

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

Mi, Z.

S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
[CrossRef]

Nagarajian, R.

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

Payne, D. N.

Pisarchik, A. N.

Poon, A. W.

Poon, J. K. S.

Sacher, W. D.

Scherer, A.

Schubert, C.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Shchekin, O. B.

D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
[CrossRef]

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Song, Y. W.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Starodubov, D.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Suemune, I.

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

Umbach, A.

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

Vahala, K.

Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vuckovic, J.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Wang, J.

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Wang, Y.

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

Willner, A. E.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Xie, Y.

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

Yamanishi, M.

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

Yariv, A.

W. M. J. Green, R. K. Lee, G. A. Derose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13(5), 1651–1659 (2005).
[CrossRef] [PubMed]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
[CrossRef]

Zhou, L.

Appl. Phys. Lett. (4)

Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in quantum well and quantum wire lasers,” Appl. Phys. Lett. 45(9), 950–952 (1984).
[CrossRef]

I. Suemune, L. A. Coldren, M. Yamanishi, and Y. Kan, “Extremely wide modulation bandwidth in a low threshold current strained quantum well laser,” Appl. Phys. Lett. 53(15), 1378–1380 (1988).
[CrossRef]

D. G. Deppe and H. Huang, “Quantum-dot vertical-cavity surface-emitting laser based on the Purcell effect,” Appl. Phys. Lett. 75(22), 3455–3457 (1999).
[CrossRef]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
[CrossRef]

Electron. Lett. (1)

M. Kuntz, G. Fiol, M. Lämmlin, C. Schubert, A. R. Kovsh, A. Jacob, A. Umbach, and D. Bimberg, “10 Gbit/s data modulation using 1.3 µm InGaAs quantum dot lasers,” Electron. Lett. 41(5), 244–245 (2005).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, “Suppression of the relaxation oscillation in the modulated output of semiconductor lasers,” IEEE J. Quantum Electron. 12(3), 194–199 (1976).
[CrossRef]

R. Nagarajian, M. Ishikawa, T. Fukushima, R. S. Geels, and J. E. Bowers, “High speed quantum-well lasers and carrier transport effects,” IEEE J. Quantum Electron. 28(10), 1990–2008 (1992).
[CrossRef]

D. G. Deppe, H. Huang, and O. B. Shchekin, “Modulation characteristics of quantum-dot lasers: The influence of P-type doping and the electronic density of states on obtaining high speed,” IEEE J. Quantum Electron. 38(12), 1587–1593 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. M. Kim, Y. Wang, M. Keever, and J. S. Harris, “High-frequency modulation characteristics of 1.3-µm InGaAs quantum dot lasers,” IEEE Photon. Technol. Lett. 16(2), 377–379 (2004).
[CrossRef]

J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett. 8(1), 34–36 (1996).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Y. W. Song, S. A. Havstad, D. Starodubov, Y. Xie, A. E. Willner, and J. Feinberg, “40-nm-wide tunable fiber ring laser with single-mode operation using a highly stretchable FBG,” IEEE Photon. Technol. Lett. 13(11), 1167–1169 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. Fathpour, Z. Mi, and P. Bhattachary, “High-speed quantum dot lasers,” J. Phys. D 38(13), 2103–2111 (2005).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Other (4)

I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V B: Systems and Networks Ch. 2 (Elsevier, 2008).

L. A. Coldren, and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, New York, 1995).

A. Yariv, and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, New York, 2007).

I. Kaminow, T. Li, and A. Willner, eds., Optical Fiber Telecommunications V A: Components and Subsystems. Ch. 3 and 6 (Elsevier, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the coupling-modulated laser. (b) Modulation response of the intracavity field from Eq. (3) for a microcavity laser with |κ0 |2 = 1%, τc = 2 ns, τph = 100 ps, fR = 1 GHz, and τ = 1.46 ps (i.e., the cavity length is 125 µm and the group index is 3.5).

Fig. 2
Fig. 2

(a) Schematic of the CM-EDFL in the experiment. (b) Output power versus coupled pump power for two of the bias coupling strengths, |κ 0|2, used in this experiment. (c) Spectrum of the laser output for |κ 0|2 = 0.5% showing single longitudinal mode operation. (d) The output response to a 100 μs pump modulation pulse starting at a time of 0 μs, where Ppump = 69 mW and |κ 0|2 = 0.5%.

Fig. 3
Fig. 3

(a) Small-sinusoidal-signal response of the coupling-modulated laser (Ppump = 75 mW) and the coupler modulator for |κ 0|2 = 0.5% between 30 kHz to 5 GHz. The inset of (a) shows the output intensity with 100 MHz coupling modulation. (b) A high resolution measurement of the coupling modulation response of the laser measured in (a).

Fig. 4
Fig. 4

Comparison of the coupler modulator with the EDFL for 1 Gb/s, NRZ, 27-1 PRBS modulation (Ppump = 75 mW). 40 bits of the PRBS pattern for (a) the coupler drive voltage, (b) EDFL output power with |κ 0|2 = 1%, and (c) EDFL output power with |κ 0|2 = 7%. (d) Coupler and (e) EDFL eye patterns with |κ 0|2 = 1%. (f) Coupler and (g) EDFL eye patterns with |κ 0|2 = 7%. Coupler eye patterns are normalized to match the scale of the EDFL eye patterns. Due to the detector noise, each bit trajectory was averaged 512 times.

Fig. 5
Fig. 5

(a) The envelope of the output obtained by undersampling the EDFL output with magnified views of the beginning and end of the pattern. (b) The eye patterns for the coupler and EDFL for the last 215 bits. The bit patterns were averaged over 300 repetitions in (a) and 18 repetitions in (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P o u t ( t ) = | κ ( t ) | 2 P i n ( t ) ,
d N d t = R p u m p N τ c v g a ( N N t r ) P i n λ τ V h c ,
d P i n d t = v g a ( N N t r ) P i n [ v g α ln ( | σ | 2 ) τ ] P i n ,
P o u t ( ω ) = | κ 0 | 2 P i n , 0 δ ( ω ) + ε P i n , 0 [ κ 0 κ ' * ( ω ) + κ 0 * κ ' ( ω ) ] [ 1 + M ( ω ) ] ,
M ( ω ) | κ 0 | 2 P i n ' ( ω ) [ κ 0 κ ' * ( ω ) + κ 0 * κ ' ( ω ) ] P i n , 0 = | κ 0 | 2 τ i ω + ( 1 / τ c + ω R 2 τ p h ) ( ω 2 ω R 2 ) i ω ( 1 / τ c + ω R 2 τ p h ) .
P o u t ( t ) | κ ( t ) | 2 P i n , 0 ,

Metrics