Abstract

Phase shifter is an important part of optical waveguide circuits as used in interferometer. However, it is not always easy to generate a large phase shift in a small region. Here, a variable phase-shifter operating as delay-line of silicon waveguide was designed and fabricated by silicon micromachining. The proposed phase-shifter consists of a freestanding submicron-wide silicon waveguide with two waveguide couplers and an ultrasmall silicon comb-drive actuator. The position of the freestanding waveguide is moved by the actuator to vary the total optical path. Phase-shift was measured in a Mach-Zehnder interferometer to be 3.0π at the displacement of 1.0 μm at the voltage of 31V. The dimension of the fabricated device is 50μm wide and 85μm long.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  2. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [CrossRef]
  3. A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
    [CrossRef]
  4. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
    [CrossRef]
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
    [CrossRef]
  6. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
    [CrossRef]
  7. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
    [CrossRef] [PubMed]
  8. E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
    [CrossRef]
  9. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  10. C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
    [CrossRef]
  11. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  12. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  13. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007).
    [CrossRef] [PubMed]
  14. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 (2009).
    [CrossRef] [PubMed]
  15. K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
    [CrossRef]
  16. M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant maicrorings (ARMs) with directly integrated thermal microphotonics,” CLEO Technical Digest, CPDB10 (2009).
  17. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–601 (1980).
    [CrossRef]
  18. T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
    [CrossRef]
  19. K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
    [CrossRef]
  20. D. H. Broaddus, M. A. Foster, I. H. Agha, J. T. Robinson, M. Lipson, and A. L. Gaeta, “Silicon-waveguide-coupled high-Q chalcogenide microspheres,” Opt. Express 17(8), 5998–6003 (2009).
    [CrossRef] [PubMed]

2009

2008

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

2007

2006

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

2005

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

2004

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

2003

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

2001

A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

1980

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–601 (1980).
[CrossRef]

Agha, I. H.

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Bolivar, P. H.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Bopp, M.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Broaddus, D. H.

Bulgan, E.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

Chen, L.

Chetrit, Y.

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Ciftcioglu, B.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Coronel, P.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Dainesi, P.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Declercq, M.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Dumon, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Fathpour, S.

Foster, M. A.

Fukazawa, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Gaeta, A. L.

Green, W. M. J.

Gunn, C.

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

Hane, K.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Hara, G.

A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Henschel, W.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Hirano, T.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Ionescu, A. M.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Izhaky, N.

Jaenen, P.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Jalali, B.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kanamori, Y.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Kokubun, Y.

Kurz, H.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Li, C.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–601 (1980).
[CrossRef]

Liao, L.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Manipatruni, S.

Monster, M.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Moselund, K. E.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Poon, A. W.

Preston, K.

Robinson, J. T.

Rooks, M. J.

Rubin, D.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sasaki, A.

A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Sekaric, L.

Skotnicki, T.

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Takahashi, K.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
[CrossRef] [PubMed]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Vlasov, Y. A.

Vorckel, A.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Zhou, L.

Appl. Phys. Lett.

E. Bulgan, Y. Kanamori, and K. Hane, “Submicron silicon waveguide optical switch driven by microelectromechanical actuator,” Appl. Phys. Lett. 92(10), 101110 (2008).
[CrossRef]

Electron. Lett.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70x60μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonics wires,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1394–1401 (2006).
[CrossRef]

IEEE Micro

C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro 26(2), 58–66 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003).
[CrossRef]

IEEE Trans. Ind. Electron.

K. Takahashi, E. Bulgan, Y. Kanamori, and K. Hane, “Submicron omb-drive actuators fabricated on thin single crystalline silicon layer,” IEEE Trans. Ind. Electron. 56(4), 991–995 (2009).
[CrossRef]

J. Lightwave Technol.

J. Phys. Chem. Ref. Data

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 561–601 (1980).
[CrossRef]

Jpn. J. Appl. Phys.

T. Fukazawa, T. Hirano, F. Ohno, and T. Baba, “Low loss intersection of Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(2), 646–647 (2004).
[CrossRef]

A. Sasaki, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B), L383–L385 (2001).
[CrossRef]

Nature

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Express

Sens. Act. A

K. E. Moselund, P. Dainesi, M. Declercq, M. Bopp, P. Coronel, T. Skotnicki, and A. M. Ionescu, “Compact gate-all-around silicon light modulator for ultra high speed operation,” Sens. Act. A 130–131, 220–227 (2006).
[CrossRef]

Other

M. R. Watts, W. A. Zortman, D. C. Trotter, G. N. Nielson, D. L. Luck, R. W. Young, “Adiabatic resonant maicrorings (ARMs) with directly integrated thermal microphotonics,” CLEO Technical Digest, CPDB10 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of submicron silicon waveguide phase-shifter with an ultra-small actuator.

Fig. 2
Fig. 2

Design of the Mach-Zehnder interferometer consisting of fixed waveguide, movable waveguide and actuator.

Fig. 3
Fig. 3

Electron micrographs of the fabricated device, (a) whole view of the device, (b) movable and input/output waveguides with couplers, (c) 3dB coupler, (d) actuator.

Fig. 4
Fig. 4

Infrared camera images, (a) maximum intensity at through port at the voltage of 15V, (b) maximum intensity at drop port at 25V.

Fig. 5
Fig. 5

Light intensities measured as a function of actuator displacement.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I t = I 0 { cos 2 ( 2 κ l ) cos 2 ( ϕ 2 ) + sin 2 ( ϕ 2 ) } ,
I d = I 0 sin 2 ( 2 κ l ) cos 2 ( ϕ 2 ) ,
ϕ = 2 π λ ( L 2 x ) .

Metrics