Abstract

We report on a method to create multiple waveguides simultaneously in 3D in fused silica. A combination of adaptive beam shaping with femtosecond laser writing is used to write two waveguides with changing separation and depth. The method is based on a programmable phase modulator and a dynamic variation of the phase-pattern during the writing process. The depth difference can be dynamically varied by changing a chirp parameter of the applied phase grating pattern. It can be employed in various photonic devices such as couplers, splitters and interferometers. Here we demonstrate splitters with both outputs ending in different depth.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, "Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing," Opt. Express 10, 645-652 (2002).
    [PubMed]
  2. A. M. Streltsov and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  3. R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
    [CrossRef]
  4. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  5. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  6. J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
    [CrossRef]
  7. C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
    [CrossRef]
  8. Y. Gu, J.-H. Chung, and J. G. Fujimoto, "Femtosecond laser fabrication of directional couplers and mach-zehnder interferometers," in "Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies," (Optical Society of America, 2007), p. CThS3.
    [PubMed]
  9. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
    [CrossRef] [PubMed]
  10. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, "Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials," Opt. Express 17, 3531-3542 (2009).
    [CrossRef] [PubMed]
  11. R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat Photon 2, 219-225 (2008).
    [CrossRef]
  12. A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
    [CrossRef]
  13. L. P. Boivin, "Multiple imaging using various types of simple phase gratings," Appl. Opt. 11, 1782-1792 (1972).
    [CrossRef] [PubMed]
  14. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
    [CrossRef]
  15. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. Laczik, "3D manipulation of particles into crystal structures using holographic optical tweezers," Opt. Express 12, 220-226 (2004).
    [CrossRef] [PubMed]

2009

2008

R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat Photon 2, 219-225 (2008).
[CrossRef]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

2005

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

2004

2003

C. Florea and K. A. Winick, "Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses," J. Lightwave Technol. 21, 246-253 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

2002

2001

2000

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

1999

1972

Audouard, E.

Bellini, N.

Boivin, L. P.

Borrelli, N. F.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Cerullo, G.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Chang, S.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Cheng, G.

Chiodo, N.

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Cooper, J.

Courtial, J.

Emons, M.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Florea, C.

Flueraru, C.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

Gattass, R. R.

R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat Photon 2, 219-225 (2008).
[CrossRef]

Grover, C. P.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Hertel, I. V.

Homoelle, D.

Huot, N.

Ippen, E. P.

Jordan, P.

Kowalevicz, A. M.

Laczik, Z.

Leach, J.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Liu, J.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Maselli, V.

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat Photon 2, 219-225 (2008).
[CrossRef]

Minoshima, K.

Morgner, U.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Osellame, R.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Padgett, M.

Palmer, G.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Polli, D.

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Pospiech, M.

Ramponi, R.

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Rosenfeld, A.

Siegel, M.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Sinclair, G.

Smith, C.

Steinmann, A.

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, "Double waveguide couplers produced by simultaneous femtosecond writing," Opt. Express 17, 3555-3563 (2009).
[CrossRef] [PubMed]

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Stoian, R.

Streltsov, A. M.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Tünnermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Vazquez, R. M.

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

Wielandy, S.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Winick, K. A.

Zhang, Z.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. A

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Electron. Lett

R. Osellame, V. Maselli, N. Chiodo, D. Polli, R. M. Vazquez, R. Ramponi, and G. Cerullo, "Fabrication of 3d photonic devices at 1.55 μm wavelength by femtosecond ti:sapphire oscillator," Electron. Lett 41, 315-317 (2005).
[CrossRef]

J. Lightwave Technol.

Laser Phys.

A. Steinmann, G. Palmer, M. Emons, M. Siegel, and U. Morgner, "Generation of 9-μj 420-fs pulses by fiber based amplification of a cavity-dumped yb:kyw laser oscillator," Laser Phys. 18, 527-529 (2008).
[CrossRef]

Nat Photon

R. R. Gattass and E. Mazur, "Femtosecond laser micromachining in transparent materials," Nat Photon 2, 219-225 (2008).
[CrossRef]

Opt. Commun.

J. Liu, Z. Zhang, S. Chang, C. Flueraru, and C. P. Grover, "Directly writing of 1-to-n optical waveguide power splitters in fused silica glass using a femtosecond laser," Opt. Commun. 253, 315-319 (2005).
[CrossRef]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer generated holograms," Opt. Commun. 185, 77-82 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Y. Gu, J.-H. Chung, and J. G. Fujimoto, "Femtosecond laser fabrication of directional couplers and mach-zehnder interferometers," in "Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies," (Optical Society of America, 2007), p. CThS3.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Waveguide writing setup. Half-wave plate (motorized) and polarizer (PBS) for power adjustment.

Fig. 2.
Fig. 2.

Phase mask of blazed gratings and Frensel lenses. (a) ϕ 1: focusing Fresnel lens (shifting upwards), ϕ 2: blazed grating (shifting to the left), ϕ 3 = ϕ 1 + ϕ 2 . (b) ϕ 4: defocusing Fresnel lens (shifting downwards), ϕ 5: blazed grating (shifting to the right), ϕ 6 = ϕ 4 + ϕ 5. (c) ϕ 3: phase mask shifting left and upwards, ϕ 6: phase mask shifting right and downwards, ϕ 7 = arg(eiϕ 3 + e iϕ 6 ).

Fig. 3.
Fig. 3.

Focusing properties of a laser beam with uniform (left (a,c,d): c = 0, p = 40px) and chirped phase profile (right (b,e,f): c = 0.39×10-3 px-1, p = 53px). (c+e) Calculated focal intensity distribution of the laser beam. (d+f) Cross-sectional microscope views of the end faces of the parallel waveguides simultaneously written with the upper phase mask at the SLM. These waveguides were written with NA 0.5 at 100 μm/s with 500 nJ (d) and 900 nJ (f).

Fig. 4.
Fig. 4.

Dependence of separation in z-direction and intensity of the foci as a function of the chirp and period parameters c and p. (a) z-separation in the c-p space. The white dotted line indicates the path from z = 0 to 13.8 μwith a constant separation in x as was used in the experiment. (b) chirp c and period p for the white line from (a) as a function of the separation in z. (c) Corresponding intensity decay.

Fig. 5.
Fig. 5.

Splitter structures from an evolving phase grating. (a) Temporal phase profile applied to the SLM. (b) Calculated focal intensity distribution.

Fig. 6.
Fig. 6.

Images of three different splitters written in fused silica with an end separation of 98 μm and separating lengths of 4 mm, 6 mm, and 8 mm. The image is composed by stitching together several microscope images, each scaled down in width by a factor of 20.

Fig. 7.
Fig. 7.

Near field image of the splitter output (middle in figure 6).

Fig. 8.
Fig. 8.

3D sketch of 2D and 3D splitters.

Fig. 9.
Fig. 9.

3D Y-Splitter with linearly increasing depth difference on the right half. The resulting depth difference at the output is 13.8 μm. (a) Full microscope top image of the splitter. (b) Cross-sectional view at the output. (c) Near field profile of the output beams.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ Fresnel ( x ) = ( 2 π λ x 2 2 f ) mod 2 π and ϕ Blazed ( x ) = ( 2 π Γ x ) mod 2 π
ϕ 7 ( x ) = arg ( e i ( ϕ 3 ( x ) ) + e i ( ϕ 6 ( x ) ) )
ϕ chirped ( x SLM ) = π · rect [ 1 2 ( sin ( 2 π x SLM + c x SLM 2 p ) + 1 ) ]
L dB = 1 2 cm [ 10 · log ( P T P I · η Split ) C L dB FL dB ] ,

Metrics