Abstract

We report on numerical and experimental characterization of the performance of a fiber link optimized for the delivery of sub-100-fs laser pulses at 1550 nm over several meters of fiber. We investigate the power handling capacity of the link, and demonstrate all-fiber delivery of 1-nJ pulses over a distance of 5.3 m. The fiber link consists of dispersion-compensating fiber (DCF) and standard single-mode fiber. The optical pulses at different positions in the fiber link are measured using frequency-resolved optical gating (FROG). The results are compared with numerical simulations of the pulse propagation based on the generalized nonlinear Schrödinger equation. The high input power capacity of the fiber link allows the splitting and distribution of femtosecond pulses to an array of fibers with applications in multi-channel fiber-coupled terahertz time-domain spectroscopy and imaging systems. We demonstrate THz pulse generation and detection using a distributed fiber link with 32 channels and 2.6 nJ input pulse energy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [CrossRef]
  3. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [CrossRef]
  4. C. Lin, H. Kogelnik, and L. G. Cohen, “Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3 - 1.7-microm spectral region,” Opt. Lett. 5(11), 476–478 (1980).
    [CrossRef] [PubMed]
  5. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jørgensen, L. V. Jørgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, “Dispersion-Compensating Fibers,” J. Lightwave Technol. 23(11), 3566–3579 (2005).
    [CrossRef]
  6. C. C. Chang, A. M. Weiner, A. M. Vengsarkar, and D. W. Peckham, “Broadband fiber dispersion compensation for sub-100-fs pulses with a compression ratio of 300,” Opt. Lett. 21(15), 1141–1143 (1996).
    [CrossRef] [PubMed]
  7. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27(17), 1513–1515 (2002).
    [CrossRef]
  8. J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
    [CrossRef]
  9. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
    [CrossRef]
  10. J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
    [CrossRef]
  11. I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43, 63 (2007).
  12. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [CrossRef] [PubMed]
  13. V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).
  14. K. W. DeLong, R. Trebino, J. Hunter, and W. E. White, “Frequency-resolved optical gating with the use of second-harmonic generation,” J. Opt. Soc. Am. B 11(11), 2206–2215 (1994).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optic, 4th ed. (Academic Press, 2006).
  16. http://www.photonics.umd.edu/software/ssprop/

2009 (1)

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

2008 (2)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43, 63 (2007).

2005 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

1998 (1)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

1996 (1)

1994 (1)

1980 (1)

Barry, L. P.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Bollond, P. G.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Böttcher, J.

Buron, J. D.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Chang, C. C.

Cohen, L. G.

Dall, J.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

DeLong, K. W.

Dudley, J. M.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Duling, I.

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43, 63 (2007).

Edvold, B.

Eichhorn, F.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Grüner-Nielsen, L.

Harvey, J. D.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Hunter, J.

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Jakobsen, D.

Jensen, T.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Jepsen, P. U.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Jørgensen, C.

Jørgensen, L. V.

Kogelnik, H.

Kristensen, P.

Krozer, V.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Künzel, H.

Kusk, A.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Leonhardt, R.

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Lin, C.

Löffler, T.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Moll, K. D.

Olsson, R. K.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Ouzounov, D. G.

Palsdottir, B.

Peckham, D. W.

Roehle, H.

Rudd, J. V.

J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Sartorius, B.

Schell, M.

Schlak, M.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Stanze, D.

Steinmeyer, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

Trebino, R.

Venghaus, H.

Vengsarkar, A. M.

Wandel, M.

Warmuth, M. W.

J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Webb, W. W.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Weiner, A. M.

White, W. E.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zhurbenko, V.

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

Zimdars, D.

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43, 63 (2007).

Zimdars, D. A.

J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Zipfel, W. R.

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43, 63 (2007).

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[CrossRef]

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008).
[CrossRef]

Opt. Express (1)

Opt. Fiber Technol. (1)

J. M. Dudley, L. P. Barry, P. G. Bollond, J. D. Harvey, and R. Leonhardt, “Characterizing Pulse Propagation in Optical Fibers around 1550 nm Using Frequency-Resolved Optical Gating,” Opt. Fiber Technol. 4(3), 237–265 (1998).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

J. V. Rudd, D. A. Zimdars, and M. W. Warmuth, “Compact fiber-pigtailed terahertz imaging system,” Proc. SPIE 3934, 27–35 (2000).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[CrossRef]

Other (3)

V. Krozer, T. Löffler, P. U. Jepsen, F. Eichhorn, R. K. Olsson, J. D. Buron, J. Dall, A. Kusk, V. Zhurbenko, and T. Jensen, “THz Imaging Systems with Aperture Synthesis Techniques,” submitted to IEEE Trans. Microwave Theory Tech. (2009).

G. P. Agrawal, Nonlinear Fiber Optic, 4th ed. (Academic Press, 2006).

http://www.photonics.umd.edu/software/ssprop/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Fiber link design. The output of the fiber laser is butt-coupled to the fiber link using FC/APC connectors. The crosses show where SMF and DCF fiber sections are spliced together.

Fig. 2
Fig. 2

FROG characterization of the 1-nJ input pulse. (a) Measured spectrogram and (b) spectrogram of the retrieved pulse. The intensity is normalized to the maximum intensity of each spectrogram. (c) The retrieved pulse intensity (solid, blue curve) and phase (green, dashed curve).

Fig. 3
Fig. 3

Numerical simulation of the pulse propagating through the fiber link with 0.1-nJ input pulse (a) and a 1.0-nJ input pulse (b). The pulse intensity is shown as a function of time and position in fiber link. The intensity scale is in dBW. The white dashed lines indicate the different fiber sections and the white boxes indicate the area where the experimental data is obtained.

Fig. 4
Fig. 4

Measured pulses after the DCF fiber for a 0.1 nJ pulse (a) and a 1.0 nJ pulse (b).

Fig. 5
Fig. 5

Experimental measurements of 0.1 nJ (a) and 1.0 nJ (b) pulses showing the final stage of the compression in the SMF fiber. The pulse intensity is shown as a function of time (vertical axis) and position (horizontal axis) in fiber link. The intensity scale is in dBW.

Fig. 6
Fig. 6

The optimum 0.1 nJ (a) and 1 nJ (b) pulses. The pulse envelope (solid line) and phase (dashed line) are shown.

Fig. 7
Fig. 7

Design approach of the multiple-element fiber link between the femtosecond laser and the THz antennas.

Fig. 8
Fig. 8

(a) 2D plot on a logarithmic scale (dBW) of the simulated pulse intensity as a function of fiber length using the measured output pulse from the laser as input pulse. The dashed line indicates the borderline between the different fiber sections. (b) Plot of the intensity and the phase of the simulated compressed pulse at 5.65 m. The FWHM pulse length is 100 fs.

Fig. 9
Fig. 9

(a) Simulated autocorrelation functions of pulses in the fiber link at positions near the point where the pulse gets re-compressed to sub-100 fs pulse length. (b) The measured autocorrelation functions in the cutback experiment. The plots are on a linear intensity scale.

Fig. 10
Fig. 10

FROG characterization of the minimum pulse width. Top row: (a) Measured spectrogram and (b) spectrogram of the retrieved pulse. The intensity is normalized to the maximum intensity of each spectrogram. (c) Plot of the intensity and the phase of the measured retrieved pulse at 5.8 m link length.

Fig. 11
Fig. 11

(a) THz transient in the time domain and (b) its frequency spectrum generated and detected in photoconductive switches excited by 0.06-nJ pulses from the fiber link.

Tables (1)

Tables Icon

Table 1 Fiber parameters at 1550 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

u d z + α 2 u + i β 2 2 2 u t 2 β 3 6 3 u t 3 = i γ ( | u | 2 u + i t 0 2 π ( | u | 2 u ) t T R u ( | u | 2 ) t ) ,
γ = 2 π n 2 A eff λ 0 = n 2 ω 0 c A eff ,

Metrics