Abstract

The impact of PDL-induced crosstalk on 100-Gb/s POLMUX RZ-DQPSK performance is investigated both experimentally and through numerical simulations in direct detection systems. We found that RZ time-interleaving, contrary to what happens with PMD, features a strong robustness to PDL. The detrimental effect of optical narrow filtering on PDL-induced penalty is also analyzed; RZ time-interleaving still proves the best solution to deal with the PDL issue.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, and C. Schulien, “Towards Robust 100G Ethernet Transmission,” Proceeding LEOS Summer Topical Meetings 2007 Digest of the IEEE, 224–225 (2007).
  2. P. Boffi, M. Ferrario, L. Marazzi, P. Martelli, P. Parolari, A. Righetti, R. Siano, and M. Martinelli, “Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK,” Opt. Express 16(17), 13398–13404 (2008).
    [CrossRef] [PubMed]
  3. T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarization dependent loss on coherent POLMUX-NRZ-DQPSK,” Proceeding OFC 2008, paper OThU5, San Diego- CA, USA (2008).
  4. Z. Wang, C. Xie, and X. Ren, “PMD and PDL impairments in polarization division multiplexing signals with direct detection,” Opt. Express 17(10), 7993–8004 (2009).
    [CrossRef] [PubMed]
  5. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  6. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ- DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [CrossRef]
  7. H. Wernz, S. Bayer, B. Olsson, M. Camera, H. Griesser, C. Fuerst, B. Koch, V. Mirvoda, A. Hidayat, and R. Noé, “112Gb/s PolMux RZ-DQPSK with fast polarization tracking based on interference control,” Proceeding OFC 2009, paper OtuN4, San Diego- CA, USA (2009).
  8. S. Chandrasekhar, X. Liu, E. C. Burrows, and L. L. Buhl, “Hybrid 107- Gb/s polarization-multiplexed DQPSK and 42.7-Gb/s DQPSK transmission at 1.4-bits/s/Hz spectral efficiency over 1280 km of SSMF and 4 bandwidth-managed ROADMs,” Proceeding ECOC 2007, paper PD1.92, Berlin (2007).
  9. H.-C. Ji, J. H. Lee, H. Kim, P. K. J. Park, and Y. C. Chung, “Effect of PDL-induced coherent crosstalk on polarization-division-multiplexed direct-detection systems,” Opt. Express 17(3), 1169–1177 (2009).
    [CrossRef] [PubMed]
  10. S. Hinz, D. Sandel, F. Wuest, and R. Noé, “PMD tolerance of polarization division multiplex transmission using return-to-zero coding,” Opt. Express 9(3), 136–140 (2001).
    [CrossRef] [PubMed]
  11. S. Chandrasekhar, and X. Liu, “Experimental investigation of system impairments in polarization multiplexed 107-Gb/s RZ-DQPSK,” Proceeding OFC 2008, paper OThU7, San Diego- CA, USA (2008).
  12. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, S. Pietralunga, R. Siano, A. Righetti, and M. Martinelli, “Polarization stabilizer for polarization-division multiplexed optical systems,” Proceeding ECOC 2007, paper 6.6.5, Berlin (2007).
  13. B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
    [CrossRef]
  14. A. B. dos Santos and J. P. von der Weid, “PDL effects in PMD emulators made out with HiBi fibers: building PMD/PDL emulators,” IEEE Photon. Technol. Lett. 16(2), 452–454 (2004).
    [CrossRef]
  15. C.-S. Kim, B. Choi, J. S. Nelson, P. Z. Dashti, and H. P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer” Proceeding OFC 2005, paper OFK7, Anaheim- CA, USA (2005).

2009 (2)

2008 (3)

2005 (1)

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

2004 (1)

A. B. dos Santos and J. P. von der Weid, “PDL effects in PMD emulators made out with HiBi fibers: building PMD/PDL emulators,” IEEE Photon. Technol. Lett. 16(2), 452–454 (2004).
[CrossRef]

2001 (1)

Abas, A. F.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Bhandare, S.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Boffi, P.

Chung, Y. C.

De Man, E.

de Waardt, H.

dos Santos, A. B.

A. B. dos Santos and J. P. von der Weid, “PDL effects in PMD emulators made out with HiBi fibers: building PMD/PDL emulators,” IEEE Photon. Technol. Lett. 16(2), 452–454 (2004).
[CrossRef]

Duthel, T.

Ferrario, M.

Fludger, C. R. S.

Geyer, J.

Guy, M.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Hidayat, A.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Hinz, S.

Ji, H.-C.

Khoe, G.-D.

Kim, H.

Lapointe, M.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Lee, J. H.

Marazzi, L.

Martelli, P.

Martinelli, M.

Milivojevic, B.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

Noé, R.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

S. Hinz, D. Sandel, F. Wuest, and R. Noé, “PMD tolerance of polarization division multiplex transmission using return-to-zero coding,” Opt. Express 9(3), 136–140 (2001).
[CrossRef] [PubMed]

Park, P. K. J.

Parolari, P.

Ren, X.

Righetti, A.

Roberts, K.

Sandel, D.

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

S. Hinz, D. Sandel, F. Wuest, and R. Noé, “PMD tolerance of polarization division multiplex transmission using return-to-zero coding,” Opt. Express 9(3), 136–140 (2001).
[CrossRef] [PubMed]

Schmidt, E.-D.

Schulien, C.

Siano, R.

Sun, H.

van den Borne, D.

von der Weid, J. P.

A. B. dos Santos and J. P. von der Weid, “PDL effects in PMD emulators made out with HiBi fibers: building PMD/PDL emulators,” IEEE Photon. Technol. Lett. 16(2), 452–454 (2004).
[CrossRef]

Wang, Z.

Wu, K. T.

Wuest, F.

Wuth, T.

Xie, C.

IEEE Photon. Technol. Lett. (2)

B. Milivojevic, A. F. Abas, A. Hidayat, S. Bhandare, D. Sandel, R. Noé, M. Guy, and M. Lapointe, “1.6-b/s/Hz 160-Gb/s 230-km RZ-DQPSK polarization multiplex transmission with tunable dispersion compensation,” IEEE Photon. Technol. Lett. 17(2), 495–497 (2005).
[CrossRef]

A. B. dos Santos and J. P. von der Weid, “PDL effects in PMD emulators made out with HiBi fibers: building PMD/PDL emulators,” IEEE Photon. Technol. Lett. 16(2), 452–454 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Other (7)

S. Chandrasekhar, and X. Liu, “Experimental investigation of system impairments in polarization multiplexed 107-Gb/s RZ-DQPSK,” Proceeding OFC 2008, paper OThU7, San Diego- CA, USA (2008).

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, S. Pietralunga, R. Siano, A. Righetti, and M. Martinelli, “Polarization stabilizer for polarization-division multiplexed optical systems,” Proceeding ECOC 2007, paper 6.6.5, Berlin (2007).

T. Duthel, C. R. S. Fludger, J. Geyer, and C. Schulien, “Impact of polarization dependent loss on coherent POLMUX-NRZ-DQPSK,” Proceeding OFC 2008, paper OThU5, San Diego- CA, USA (2008).

H. Wernz, S. Bayer, B. Olsson, M. Camera, H. Griesser, C. Fuerst, B. Koch, V. Mirvoda, A. Hidayat, and R. Noé, “112Gb/s PolMux RZ-DQPSK with fast polarization tracking based on interference control,” Proceeding OFC 2009, paper OtuN4, San Diego- CA, USA (2009).

S. Chandrasekhar, X. Liu, E. C. Burrows, and L. L. Buhl, “Hybrid 107- Gb/s polarization-multiplexed DQPSK and 42.7-Gb/s DQPSK transmission at 1.4-bits/s/Hz spectral efficiency over 1280 km of SSMF and 4 bandwidth-managed ROADMs,” Proceeding ECOC 2007, paper PD1.92, Berlin (2007).

C.-S. Kim, B. Choi, J. S. Nelson, P. Z. Dashti, and H. P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer” Proceeding OFC 2005, paper OFK7, Anaheim- CA, USA (2005).

C. R. S. Fludger, T. Duthel, and C. Schulien, “Towards Robust 100G Ethernet Transmission,” Proceeding LEOS Summer Topical Meetings 2007 Digest of the IEEE, 224–225 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simulated PDL-induced OSNR penalties with (a) a 1.4-nm filter and (b) a 0.25-nm filter, for RZ-DQPSK (continuous lines) and NRZ-DQPSK (dashed lines), interleaved (squares) and overlapped (circles).

Fig. 2
Fig. 2

Simulated PDL-induced attenuation for each POLMUX channel.

Fig. 3
Fig. 3

Experimental set-up.

Fig. 4
Fig. 4

Measured BER vs. OSNR (0.5-nm resolution) with (a) 1.4-nm filter and (b) 0.25-nm filter. Single polarization channel (black line) is compared with POLMUX RZ interleaving (continuous lines) and POLMUX RZ overlapping (dashed lines) for different PDL values.

Fig. 5
Fig. 5

Measured PDL-induced OSNR penalties compared to simulated ones with (a) 1.4-nm filter and (b) a 0.25-nm filter.

Metrics