Abstract

An integrated Raman-based cytometry was developed with photothermal (PT) and photoacoustic (PA) detection of Raman-induced thermal and acoustic signals in biological samples with Raman-active vibrational modes. The two-frequency, spatially and temporally overlapping pump–Stokes excitation in counterpropagating geometry was provided by a nanosecond tunable (420–2300 nm) optical parametric oscillator and a Raman shifter (639 nm) pumped by a double-pulsed Q-switched Nd:YAG laser using microscopic and fiberoptic delivery of laser radiation. The PA and PT Raman detection and imaging technique was tested in vitro with benzene, acetone, olive oil, carbon nanotubes, chylomicron phantom, and cancer cells, and in vivo in single adipocytes in mouse mesentery model. The integration of linear and nonlinear PA and PT Raman scanning and flow cytometry has the potential to enhance its chemical specificity and sensitivity including nanobubble-based amplification (up to 10- fold) for detection of absorbing and nonabsorbing targets that are important for both basic and clinically relevant studies of lymph and blood biochemistry, cancer, and fat distribution at the single-cell level.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Zharov, and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag; Berlin Heidelberg 1986).
  2. V. P. Zharov, Laser optoacoustic spectroscopy in chromatography: in Laser Analytical Spectrochemistry, V. S. Letokhov, ed. (Boston, 1986), pp. 229–271.
  3. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  4. L. V. Wang, ed., Photoacoustic imaging and spectroscopy (CRC Press, 2009).
  5. J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
    [CrossRef] [PubMed]
  6. E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
    [CrossRef] [PubMed]
  7. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
    [CrossRef] [PubMed]
  8. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
    [CrossRef] [PubMed]
  9. S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).
  10. J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979).
    [CrossRef]
  11. C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979).
    [CrossRef]
  12. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
    [CrossRef]
  13. G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
    [CrossRef]
  14. J. J. Barrett and D. F. Heller, “Theoretical analysis of photoacoustic Raman spectroscopy,” J. Opt. Soc. Am. 71(11), 1299–1308 (1981).
    [CrossRef]
  15. C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
    [CrossRef]
  16. A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).
  17. Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
    [CrossRef]
  18. K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
    [CrossRef]
  19. Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25(14), 1040–1042 (2000).
    [CrossRef]
  20. Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
    [CrossRef]
  21. R. C. Sharma, “A novel demonstration of photoacoustic Raman spectroscopy with combined stimulated Raman pumping in H2 molecule,” Opt. Commun. 282(6), 1183–1185 (2009).
    [CrossRef]
  22. A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
    [CrossRef]
  23. Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
    [PubMed]
  24. J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
    [CrossRef] [PubMed]
  25. E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
    [PubMed]
  26. V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
    [CrossRef]
  27. R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).
  28. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008).
    [CrossRef] [PubMed]
  29. A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
    [CrossRef] [PubMed]
  30. J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
    [CrossRef]
  31. V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
    [CrossRef]
  32. T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
    [CrossRef] [PubMed]
  33. V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
    [CrossRef]
  34. C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
    [CrossRef]
  35. X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
    [CrossRef] [PubMed]

2009 (7)

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

R. C. Sharma, “A novel demonstration of photoacoustic Raman spectroscopy with combined stimulated Raman pumping in H2 molecule,” Opt. Commun. 282(6), 1183–1185 (2009).
[CrossRef]

R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
[CrossRef] [PubMed]

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (4)

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
[PubMed]

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

2005 (3)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

2003 (1)

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

2000 (3)

Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25(14), 1040–1042 (2000).
[CrossRef]

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

1999 (1)

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

1997 (1)

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

1985 (1)

A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).

1981 (2)

J. J. Barrett and D. F. Heller, “Theoretical analysis of photoacoustic Raman spectroscopy,” J. Opt. Soc. Am. 71(11), 1299–1308 (1981).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

1980 (1)

G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
[CrossRef]

1979 (2)

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979).
[CrossRef]

1975 (1)

S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).

Abe, Y.

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Barrett, J. J.

J. J. Barrett and D. F. Heller, “Theoretical analysis of photoacoustic Raman spectroscopy,” J. Opt. Soc. Am. 71(11), 1299–1308 (1981).
[CrossRef]

G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
[CrossRef]

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979).
[CrossRef]

Bernet, S.

C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008).
[CrossRef] [PubMed]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

Berry, M. J.

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979).
[CrossRef]

Biagi, P. F.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Biris, A. S.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

Brodnikovskii, A. M.

A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).

Bydlowski, S. P.

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Capozzi, V.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Carmone, P.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Chambers, T. C.

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

Chamone, D. A. F.

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Cheng, J. X.

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
[CrossRef] [PubMed]

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Ciardi, C.

Cicero, R.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Das, K.

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

De Gelder, J.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

De Gussem, K.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

Donfak, P.

R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).

El-Abassy, R. M.

R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).

Fratello, A.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Galanzha, E. I.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
[PubMed]

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

Galitovskiy, V.

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

Gallone, A.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Grellner, W. J.

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

Guida, G.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Harris, W. S.

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

Heinrich, C.

C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008).
[CrossRef] [PubMed]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

Heller, D. F.

Hofer, A.

Huff, T. B.

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
[CrossRef] [PubMed]

Kawada, N.

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Kelly, T.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Khlebtsov, N. G.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

Kim, J. W.

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

Kim, J.-W.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

Koroteev, N.P.

A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).

Kotagiri, N.

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

Lapotko, D. O.

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

Le, T. T.

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
[CrossRef] [PubMed]

Lehmann, K.

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

Li, Z.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

Lyle, C. S.

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

Maeda, M.

Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25(14), 1040–1042 (2000).
[CrossRef]

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Mahmood, M.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

Maranhão, R. C.

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Materny, A.

R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).

Meusburger, C.

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

Miles, J. M.

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

Moens, L.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

Moon, H. M.

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

Nakazono, S.

Nan, X.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Nechaeiv, S.

S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).

Nonaka, Y.

Ogawa, T.

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Oki, Y.

Y. Oki, S. Nakazono, Y. Nonaka, and M. Maeda, “Sensitive H2 detection by use of thermal-lens Raman spectroscopy without a tunable laser,” Opt. Lett. 25(14), 1040–1042 (2000).
[CrossRef]

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Park, Y.

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

Patel, C. K. N.

C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979).
[CrossRef]

Perna, G.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Ponomarev, N.

S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).

Ritsch, A.

Ritsch-Marte, M.

C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express 16(4), 2699–2708 (2008).
[CrossRef] [PubMed]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

Rostovtsev, Y.

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

Sakashita, A. M.

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Scully, M.

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

Sharma, R. C.

R. C. Sharma, “A novel demonstration of photoacoustic Raman spectroscopy with combined stimulated Raman pumping in H2 molecule,” Opt. Commun. 282(6), 1183–1185 (2009).
[CrossRef]

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

Siebert, D. R.

G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
[CrossRef]

Spring, P. M.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

Suen, J. Y.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979).
[CrossRef]

Tuchin, V. V.

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
[PubMed]

Vandenabeele, P.

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

Wang, L. V.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

West, G. A.

G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
[CrossRef]

Xie, X. S.

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Xu, Y.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

Yang, L.

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Zanna, P.

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

Zharov, V. P.

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
[PubMed]

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

Zharov, V.P.

A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).

Am. J. Physiol. Endocrinol. Metab. (1)

Y. Park, W. J. Grellner, W. S. Harris, and J. M. Miles, “A new method for the study of chylomicron kinetics in vivo,” Am. J. Physiol. Endocrinol. Metab. 279(6), E1258–E1263 (2000).
[PubMed]

Ann. Hematol. (1)

A. M. Sakashita, S. P. Bydlowski, D. A. F. Chamone, and R. C. Maranhão, “Plasma kinetics of an artificial emulsion resembling chylomicrons in patients with chronic lymphocytic leukemia,” Ann. Hematol. 79(12), 687–690 (2000).
[CrossRef]

Appl. Phys. (Berl.) (1)

G. A. West, D. R. Siebert, and J. J. Barrett, “Gas phase photoacoustic Raman spectroscopy using pulsed laser excitation,” Appl. Phys. (Berl.) 51, 2823–2828 (1980).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–147 (1979).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Optoacoustic Raman gain spectroscopy of liquids,” Appl. Phys. Lett. 34(11), 760–763 (1979).
[CrossRef]

BMC Cancer (1)

T. T. Le, T. B. Huff, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9(1), 42 (2009).
[CrossRef] [PubMed]

Cancer Res. (1)

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

V. P. Zharov and D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

J. Biomed. Opt. (3)

V. P. Zharov, E. I. Galanzha, E. V. Shashkov, J.-W. Kim, N. G. Khlebtsov, and V. V. Tuchin, “Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,” J. Biomed. Opt. 12(5), 051503 (2007).
[CrossRef] [PubMed]

V. P. Zharov, V. Galitovskiy, C. S. Lyle, and T. C. Chambers, “Superhigh-sensitivity photothermal monitoring of individual cell response to antitumor drug,” J. Biomed. Opt. 11(6), 064034 (2006).
[CrossRef]

A. S. Biris, E. I. Galanzha, Z. Li, M. Mahmood, Y. Xu, and V. P. Zharov, “In vivo Raman flow cytometry for real-time detection of carbon nanotube kinetics in lymph, blood, and tissues,” J. Biomed. Opt. 14(2), 021006 (2009).
[CrossRef] [PubMed]

J. Lipid Res. (1)

X. Nan, J. X. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44(11), 2202–2208 (2003).
[CrossRef] [PubMed]

J. Mol. Struct. (1)

V. Capozzi, G. Perna, A. Gallone, P. F. Biagi, P. Carmone, A. Fratello, G. Guida, P. Zanna, and R. Cicero, “Raman and optical spectroscopy of eumelanin films,” J. Mol. Struct. 744-747, 717–721 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Raman Spectrosc. (3)

J. De Gelder, K. De Gussem, P. Vandenabeele, and L. Moens, “References database of Raman spectra of biological molecules,” J. Raman Spectrosc. 38(9), 1133–1147 (2007).
[CrossRef]

C. Heinrich, C. Meusburger, S. Bernet, and M. Ritsch-Marte, “CARS miscoscopy in a wide-field geometry with nanosecond pulses,” J. Raman Spectrosc. 37(6), 675–679 (2006).
[CrossRef]

R. M. El-Abassy, P. Donfak, and A. Materny, “Visible Raman spectroscopy for the discrimination of olive oils from different vegetable oils and the detection of adulteration,” J. Raman Spectrosc. •••, 2279 (2009).

Jpn. J. Appl. Phys. (1)

Y. Oki, N. Kawada, T. Ogawa, Y. Abe, and M. Maeda, “Y. Abe and M. Maeda, “Sensitive H 2 detection using a new technique of photoacoustic Raman spectroscopy,” Jpn. J. Appl. Phys. 36(Part 2, No. 9A/B), L1172–L1174 (1997).
[CrossRef]

Lasers Surg. Med. (1)

J.-W. Kim, E. V. Shashkov, E. I. Galanzha, N. Kotagiri, and V. P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters,” Lasers Surg. Med. 39(7), 622–634 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

J. W. Kim, E. I. Galanzha, E. V. Shashkov, H. M. Moon, and V. P. Zharov, “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” Nat. Nanotechnol. 4(10), 688–694 (2009).
[CrossRef] [PubMed]

E. I. Galanzha, E. V. Shashkov, T. Kelly, J.-W. Kim, L. Yang, and V. P. Zharov, “In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,” Nat. Nanotechnol. 4(12), 855–860 (2009).
[CrossRef] [PubMed]

Opt. Commun. (3)

K. Das, Y. Rostovtsev, K. Lehmann, and M. Scully, “Thermodynamic and noise considerations for the detection of microscopic particles in a gas by photoacoustic Raman spectroscopy,” Opt. Commun. 246(4-6), 551–559 (2005).
[CrossRef]

Y. Oki, N. Kawada, Y. Abe, and M. Maeda, “Nonlinear Raman spectroscopy without tunable laser for sensitive gas detection in the atmosphere,” Opt. Commun. 161(1-3), 57–62 (1999).
[CrossRef]

R. C. Sharma, “A novel demonstration of photoacoustic Raman spectroscopy with combined stimulated Raman pumping in H2 molecule,” Opt. Commun. 282(6), 1183–1185 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Mod. Phys. (2)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58(2), 381–431 (1986).
[CrossRef]

C. K. N. Patel and A. C. Tam, “Pulsed optoacoutstic spectroscopy of condensed matter,” Rev. Mod. Phys. 53(3), 517–550 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Sov. J. Quantum Electron. (2)

S. Nechaeiv and N. Ponomarev, “High-resolution Raman spectrometer,” Sov. J. Quantum Electron. 5, 72–76 (1975).

A. M. Brodnikovskii, V.P. Zharov, and N.P. Koroteev, “Photoacoustic Raman spectroscopy of molecular gases,” Sov. J. Quantum Electron. •••, 2421–2430 (1985).

World J. Gastroenterol. (1)

E. I. Galanzha, V. V. Tuchin, and V. P. Zharov, “Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening,” World J. Gastroenterol. 13(2), 192–218 (2007).
[PubMed]

Other (3)

L. V. Wang, ed., Photoacoustic imaging and spectroscopy (CRC Press, 2009).

V. P. Zharov, and V. S. Letokhov, Laser Optoacoustic Spectroscopy (Springer-Verlag; Berlin Heidelberg 1986).

V. P. Zharov, Laser optoacoustic spectroscopy in chromatography: in Laser Analytical Spectrochemistry, V. S. Letokhov, ed. (Boston, 1986), pp. 229–271.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Method of PA and PT Raman cytometry with two-frequency excitation of the vibrational mode of the cells. (a) Level scheme of the Raman transition. (b) Schematic of cell irradiation. (c) Microscopic and fiber-based optical diagram. T, telescope; D, diaphragm; A, attenuator. (d) Double pumping of two-channel Nd:YAG laser. (e) Scheme details.

Fig. 2
Fig. 2

PA Raman signals in liquids obtained with parallel polarization of the pump and Stokes beams. (a) PA Raman spectra (PARS) of acetone obtained in a thin (120 μm) microscope slide by scanning of first beam in the visible spectral range (PARSVIS) and in the NIR range (PARSNIR) at a fixed second beam wavelength of 639 nm (15,649 cm–1). Dash curves show linear PA background during spectral scanning of first beam alone (i.e., without second beam at 639 nm). (b) PA Raman spectra of benzene obtained in a microscope slide at a fixed pump wavelength of 639 nm and spectral scanning of a Stokes beam in the NIR range. (c) PA signal amplitude as a function of delay time between the pump and Stokes beams for acetone. (d) PA Raman signal for acetone at delays of 0 (top, left) and 20 ns (top, right), compared to signals induced by the pump (bottom, left) and the Stokes (bottom, right) beams alone. Amplitude and time scale: 10 mV/div and 1 μs/div.

Fig. 3
Fig. 3

PA Raman signals in olive droplets in a cuvette. (a) PARS at pump and Stokes beam frequencies in the visible and NIR ranges obtained by scanning at a pump beam wavelength tuned in the visible range and at a fixed Stokes wavelength and by scanning at a fixed pump beam wavelength and at a Stokes beam wavelength in the NIR range. (b) PA Raman signal amplitude as a function of the pump laser energy at 529 nm. (c,d) PA signal amplitude as function of delay time between pump and Stokes pulses with pump wavelengths in the visible (c) and the NIR ranges (d). (e) PT Raman signal at a νP of 539 nm and a νS of 639 nm at delays of 0 (left) and 20 ns (right). (f) Linear PA signals at delays of 2.5 μs (left), as well as with a 1-mm distance between pump and Stokes beams (right). Amplitude and time scales: 50 mV/div and 1 μs/div.

Fig. 4
Fig. 4

Linear and nonlinear PA/PT effects in CNTs. (a) PA signal as a function of laser energy. The insets show conventional (i.e., with one-frequency laser excitation) PT signals in linear (left) and nonlinear (right) modes associated with microbubble formation around overheated CNT clusters. (b) PA Raman signal amplitude as function delay between pump and Stokes beams. The inset shows PA signal at delays of 0 (left) and 30 ns (right). (c) PA Raman spectra at delays of 0 and 30 ns between the pump and Stokes beams.

Fig. 5
Fig. 5

Linear and nonlinear PA effects in chylomicron phantoms and cells in vitro. (a) PA signal in breast cancer at delays of 0 (left) and 20 ns (right). (b,c) PA signals in 200-nm chylomicron phantoms at delays of 0 (left) and 20 ns (right) in the visible (b) and the NIR (c) spectral ranges.

Fig. 6
Fig. 6

PA/PT detection of adipocytes in vivo in a mouse mesentery model. (a) Mouse mesentery with single layer of adipocytes and the He-Ne probe beam. (b) PT Raman image of a single adipocyte in vivo using two wavelengths: 835 nm as pump (30 µJ) and 639 nm (25 µJ) as Stokes wave. (c) Conventional PT image of a single adipocyte in vivo using a 550 nm (50 µJ) for heating of cellular cytochromes, and 639 nm, as probe beam (10 nJ) at 30-ns delay [26]. (d) PA Raman signals from adipocytes in vitro at delays of 0 (left) and 20 ns (ritgh). (e) PA Raman signals from adipocytes in vivo at delays of 0 (left) and 20 ns (right). The signal oscillations are associated with reflections of acoustic waves in the cuvette. The time scales: 1μs/div (d), and 10 μs/div (e).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ E / =   [ ( ν P   ν S ) / ν S ]  E S g S +  E P α S +  E P α P ,

Metrics