Abstract

In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
    [CrossRef]
  2. M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
    [CrossRef] [PubMed]
  3. M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
    [CrossRef] [PubMed]
  4. S. W. S. Hell, E. H. K., “Lens Aberrations in Confocal Fluorescence Microscopy,” in Handbook of Biological Confocal Microscopy, Second ed., J. B. Pawley, ed. (Plenum Press, 1995), pp. 347–354.
  5. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11(10), 1123–1130 (2003).
    [CrossRef] [PubMed]
  6. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
    [CrossRef] [PubMed]
  7. M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
    [CrossRef]
  8. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
    [CrossRef]
  9. M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002).
    [CrossRef]
  10. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
    [CrossRef]
  11. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  12. S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt. 14(3), 030513 (2009).
    [CrossRef] [PubMed]
  13. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17(16), 14367–14373 (2009).
    [CrossRef] [PubMed]
  14. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, “Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors,” Appl. Opt. 47(35), 6550–6562 (2008).
    [CrossRef] [PubMed]
  15. C. Paterson, I. Munro, and J. C. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6(9), 175–185 (2000).
    [CrossRef] [PubMed]
  16. P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
    [CrossRef]
  17. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
    [CrossRef]
  18. P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36(11), 2305–2312 (1997).
    [CrossRef] [PubMed]
  19. P. Török, P. R. T. Munro, and E. E. Kriezis, “High numerical aperture vectorial imaging in coherent optical microscopes,” Opt. Express 16(2), 507–523 (2008).
    [CrossRef] [PubMed]
  20. M. Mansuripur, “Effects of High-Numerical-Aperture Focusing on the State of Polarization in Optical and Magnetooptic Data-Storage Systems,” Appl. Opt. 30(22), 3154–3162 (1991).
    [CrossRef] [PubMed]
  21. Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
    [CrossRef]
  22. J. C. Lai, Z. H. Li, C. Y. Wang, and A. Z. He, “Experimental measurement of the refractive index of biological tissues by total internal reflection,” Appl. Opt. 44(10), 1845–1849 (2005).
    [CrossRef] [PubMed]
  23. M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
    [CrossRef] [PubMed]
  24. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
    [CrossRef] [PubMed]
  25. S. P. Poland, A. J. Wright, and J. M. Girkin, “Evaluation of fitness parameters used in an iterative approach to aberration correction in optical sectioning microscopy,” Appl. Opt. 47(6), 731–736 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[CrossRef] [PubMed]

M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
[CrossRef]

2006

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006).
[CrossRef] [PubMed]

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

2005

2004

M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
[CrossRef] [PubMed]

2003

2002

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002).
[CrossRef]

2000

1998

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

1997

P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36(11), 2305–2312 (1997).
[CrossRef] [PubMed]

P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
[CrossRef]

1991

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

Booth, M.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Booth, M. J.

M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32(1), 5–7 (2007).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002).
[CrossRef]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Burns, D.

Chen, J. Y.

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

Coburn, D.

Dainty, C.

Dainty, J. C.

Dalimier, E.

Daly, E.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Devaney, N.

Drexler, W.

Farrell, T.

Fernandez, E. J.

Girkin, J. M.

He, A. Z.

Hermann, B.

Hewlett, S. J.

P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
[CrossRef]

Inoue, T.

Itoh, H.

Jin, Y. L.

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

Kawata, S.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Kriezis, E. E.

Lai, J. C.

Laurent, F.

Li, Z. H.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Mackey, D.

Mackey, R.

Mansuripur, M.

Marsh, P. N.

Matsumoto, N.

Munro, I.

Munro, P. R. T.

Neil, M. A. A.

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002).
[CrossRef]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

Oddershede, L. B.

S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt. 14(3), 030513 (2009).
[CrossRef] [PubMed]

Paterson, C.

Poland, S. P.

Povazay, B.

Reihani, S. N. S.

S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt. 14(3), 030513 (2009).
[CrossRef] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Schwertner, M.

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[CrossRef] [PubMed]

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
[CrossRef] [PubMed]

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

Tanaka, T.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Torok, P.

P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
[CrossRef]

Török, P.

Unterhuber, A.

Vabre, L.

Varga, P.

P. Török and P. Varga, “Electromagnetic diffraction of light focused through a stratified medium,” Appl. Opt. 36(11), 2305–2312 (1997).
[CrossRef] [PubMed]

P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
[CrossRef]

Wang, C. Y.

Wang, P. N.

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

Wilson, T.

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[CrossRef] [PubMed]

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19(10), 2112–2120 (2002).
[CrossRef]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

Wright, A. J.

Xu, L.

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

Appl. Opt.

J. Biomed. Opt.

S. N. S. Reihani and L. B. Oddershede, “Confocal microscopy of thick specimens,” J. Biomed. Opt. 14(3), 030513 (2009).
[CrossRef] [PubMed]

J. Microsc.

P. Torok, S. J. Hewlett, and P. Varga, “The role of specimen-induced spherical aberration in confocal microscopy,” J. Microsc. 188(2), 158–172 (1997).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192(2), 90–98 (1998).
[CrossRef]

M. Schwertner, M. J. Booth, M. A. A. Neil, and T. Wilson, “Measurement of specimen-induced aberrations of biological samples using phase stepping interferometry,” J. Microsc. 213(1), 11–19 (2004).
[CrossRef]

M. Schwertner, M. J. Booth, and T. Wilson, “Specimen-induced distortions in light microscopy,” J. Microsc. 228(1), 97–102 (2007).
[CrossRef] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[CrossRef] [PubMed]

M. Schwertner, M. J. Booth, and T. Wilson, “Simulation of specimen-induced aberrations for objects with spherical and cylindrical symmetry,” J. Microsc. 215(3), 271–280 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Commun.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

Y. L. Jin, J. Y. Chen, L. Xu, and P. N. Wang, “Refractive index measurement for biomaterial samples by total internal reflection,” Phys. Med. Biol. 51(371–N), 379 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Other

S. W. S. Hell, E. H. K., “Lens Aberrations in Confocal Fluorescence Microscopy,” in Handbook of Biological Confocal Microscopy, Second ed., J. B. Pawley, ed. (Plenum Press, 1995), pp. 347–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram showing a high NA objective lens focusing light through a refractive index boundary for the case where the immersion fluid (n1) has a higher refractive index than the specimen (n2).

Fig. 2
Fig. 2

- Calculated wavefront in the exit pupil of the objective lens for three different sets of imaging parameters. Dashed lines show the total wavefront aberration, solid lines show the wavefront with the defocus term removed.

Fig. 3
Fig. 3

- Surface plot showing the residual error in a fit of the PDM to the wavefront arising from an NA = 1.2 oil immersion objective focusing 100 μm into water. In this case the minimum residual wavefront error is 0.20 μm, which occurs for an aperture ratio of 0.59 using 33 of the 37 available spatial modes (shown by the filled black circle).

Fig. 4
Fig. 4

- Surface plot showing the residual error in a fit of the Mirao 52-e to the wavefront arising from an NA = 1.2 oil immersion objective focusing 100 μm into water. In this case the minimum residual wavefront error is 0.09 μm, which occurs for an aperture ratio of 0.89 using all 52 of the spatial modes (shown by the filled red circle).

Fig. 5
Fig. 5

- Actuator layout in relation to the mirror pupil for the PDM (left) and the Mirao 52-e (right). PDM actuators indicated by black rectangles with white borders, Mirao 52-e actuators indicated by square cells. For each mirror the full useable aperture is indicated by the solid black line, reduced apertures in steps of 10% are indicated by the dotted red lines, the dashed blue line indicates the optimum pupil size for correction of the aberrated wavefront resulting from an NA = 1.2 oil immersion objective focusing 100 μm into water.

Fig. 6
Fig. 6

– The ability of both DMs to fit the simulated wavefront for an NA = 1.2 oil immersion objective imaging 100 μm into water with optimized aperture ratio and number of spatial modes. Top - PDM with an aperture ratio of 0.59, 33 spatial modes (rms residual wavefront error of 0.20 μm). Bottom – Mirao 52-e with an aperture ratio of 0.89 and 52 spatial modes (rms residual wavefront error of 0.09 μm).

Fig. 7
Fig. 7

- Strehl ratio as a function of focusing depth with and without aberration correction using PDM with an aperture ratio of 0.59 and optimised number of spatial modes at each depth.

Fig. 8
Fig. 8

- Strehl ratio as a function of focusing depth with and without aberration correction using Mirao 52-e with an aperture ratio of 0.89 and optimised number of spatial modes at each depth.

Fig. 9
Fig. 9

- Peak to valley displacement of both PDM (top) and Mirao 52-e (bottom) mirrors as individual actuators are driven.

Tables (2)

Tables Icon

Table 1 - Three imaging conditions used to test DMs

Tables Icon

Table 2 – Increase in maximum focusing depth at which diffraction limited is possible after aberration correction using both DMs

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

φ ( d , ρ ) = { cosec 2 ( β ) ρ 2 cosec 2 ( α ) ρ 2 } d n 1 sin ( α )
φ ( d , ρ ) = [ A 00 + n = 2 A n 0 Z n 0 ( ρ ) ] d n 1 sin ( α )
Z n 0 ( ρ ) = n + 1 s = 0 n / 2 ( 1 ) s ( n 2 ) ! s ! ( n / 2 s ) ! ρ n 2 s
A n 0 = B n ( α ) B n ( β )
B n ( γ ) = [ 1 ( n 1 n + 3 ) tan 4 ( γ / 2 ) ] tan n 1 ( γ / 2 ) 2 ( n 1 ) n + 1
φ m = A m x m
A m = U S V T A m 1 = V S 1 U T
φ m = U S V T f ( V S 1 U T φ 0 )
f = { x i f o r | x i | x max x max x i | x i | f o r | x i | x max
S ( σ ) e ( 2 π σ ) 2
φ m ( x 1 ) + φ m ( x 2 ) = φ m ( x 1 + x 2 )

Metrics