Abstract

We report on the fabrication of sub-wavelength nanostructures on the surface of As2S3 chalcogenide glasses by appropriately controlling the irradiation condition of single-beam direct femtosecond laser writing. Nanogratings with a period of 180 nm were realized by multipulse irradiation. More importantly controllable nanoholes as small as 200 nm in diameter (one quarter of the illumination wavelength) were, for the first time, achieved in As2S3 using direct laser writing by single-pulse irradiation.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [CrossRef]
  2. C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev. DIO:10.1002/lpor.200810072.
  3. E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
    [CrossRef] [PubMed]
  4. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
    [CrossRef]
  5. J. Zarzycki, Glasses and Amorphous Materials, (Wiley, New York, 2001) Chap. 7.
  6. Z. L. Samson, K. F. MacDonald, F. De Angelise, G. Adamo, K. Knight, C. C. Huang, D. W. Hewak, E. Di Fabrizio, and N. I. Zheludev, “Chalcogenide glass metamaterial optical switch,” FiO 2009 San Jose 11–15 Oct 2009, PDPB1 (Postdeadline).
  7. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
    [CrossRef]
  8. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
    [CrossRef]
  9. G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
    [CrossRef]
  10. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [CrossRef] [PubMed]
  11. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [CrossRef] [PubMed]
  12. A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
    [CrossRef]
  13. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
    [CrossRef]
  14. A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
    [CrossRef]
  15. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
    [CrossRef] [PubMed]
  16. G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
    [CrossRef]
  17. A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
    [CrossRef]

2009 (2)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

2008 (1)

2007 (2)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[CrossRef]

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

2006 (2)

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

2005 (1)

2004 (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

2003 (4)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[CrossRef]

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

1999 (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Adam, J. L.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Arias, I.

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Borowiec, A.

A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[CrossRef]

Bulla, D.

Chen, G. R.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

García-Martín, A.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

Gu, M.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
[CrossRef] [PubMed]

Haugen, H. H.

A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[CrossRef]

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[CrossRef]

Hirao, K.

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30(4), 352–354 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Hudgens, S.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Hughes, M.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[CrossRef]

Hunti, A. J.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Jaque, D.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Jaque, F.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

Jia, B.

Joglekar, A. P.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Johnson, B.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Kuroiwa, Y.

Lamela, J.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

Lifante, G.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

Liu, H.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Luther-Davies, B.

Ma, H. L.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Mendez, C.

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Meyhöfer, E.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Mourou, G.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Narita, Y.

Nicoletti, E.

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Ren, J.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Rodenas, A.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Roso, L.

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Spooner, G. P.

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Takeshima, N.

Tanaka, S.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Torchia, G. A.

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

Ventura, M. J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Yang, G.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[CrossRef]

Yang, Y. X.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

Zhang, X. H.

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Zhou, G.

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

E. Nicoletti, G. Zhou, B. Jia, M. J. Ventura, D. Bulla, B. Luther-Davies, and M. Gu, “Observation of multiple higher-order stopgaps from three-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 33(20), 2311–2313 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (2)

G. A. Torchia, C. Mendez, I. Arias, L. Roso, A. Rodenas, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83(4), 559–563 (2006).
[CrossRef]

A. P. Joglekar, H. Liu, G. P. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunti, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

A. Rodenas, J. Lamela, D. Jaque, G. Lifante, F. Jaque, A. García-Martín, G. Zhou, and M. Gu, “Near-field imaging of femtosecond laser ablated sub-lambda/4 holes in lithium niobate,” Appl. Phys. Lett. 95(18), 181103 (2009).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90(13), 131113 (2007).
[CrossRef]

A. Borowiec and H. H. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82(25), 4462 (2003).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Yang, X. H. Zhang, J. Ren, Y. X. Yang, G. R. Chen, H. L. Ma, and J. L. Adam, “Glass formation and properties of chalcogenides in a GeSe2–As2Se3–PbSe system,” J. Am. Ceram. Soc. 90(5), 1500–1503 (2007).
[CrossRef]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803 (1999).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[CrossRef]

MRS Bull. (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull. 29, 829–832 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Mechanisms of ultrafast laser-induced deep-subwavelength gratings on graphite and diamond,” Phys. Rev. B 79(12), 125436 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[CrossRef] [PubMed]

Other (3)

J. Zarzycki, Glasses and Amorphous Materials, (Wiley, New York, 2001) Chap. 7.

Z. L. Samson, K. F. MacDonald, F. De Angelise, G. Adamo, K. Knight, C. C. Huang, D. W. Hewak, E. Di Fabrizio, and N. I. Zheludev, “Chalcogenide glass metamaterial optical switch,” FiO 2009 San Jose 11–15 Oct 2009, PDPB1 (Postdeadline).

C. Grillet, C. Monat, C. L. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Karnutsch, and B. J. Eggleton, “Reconfigurable photonic crystal circuits,” Laser Photon. Rev. DIO:10.1002/lpor.200810072.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup for the nano-fabrication experiment. SEM images of the nanogratings fabricated by multipulse irradiation with laser beams polarized along (b) vertical and (c) horizontal directions.

Fig. 2
Fig. 2

(a) to (c) SEM image of nanogratings produced at an energy level of 1.6 nJ under 2 to 10 pulse irradiation (pulse interval: 1 s); (d) SEM image of nanogratings produced at an energy level of 1.6 nJ with 10 pulses and a 10 ms pulse interval; (e) SEM image of nanoholes produced at an energy level of 3.6 nJ with 10 pulses and 10 ms pulse interval. Scale bar: 1 µm.

Fig. 3
Fig. 3

Dependence of the nanohole diameter on the pulse number for multipulse fabrication at a pulse energy level of 3.6 nJ with a pulse separation of 0.5 s. Inset: SEM image of nanogratings produced for different pulse energy levels from 1.3 nJ to 2.0 nJ with 10 pulse irradiation. Scale bar: 1 µm.

Fig. 4
Fig. 4

(a) SEM images of the nanoholes at different energy levels; (b) SEM images of nanoholes with a diameter of 200 nm; (c) Topological image of the same nanohole as shown in (b) obtained from a scanning near-field microscope. (d) Dependence of the nanohole diameter on the laser energy for single-pulse fabrication.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = P 1 ln E P 2 ,

Metrics