Abstract

We propose a compound metallic grating with perpendicular cuts in each slit and investigate its optical transmission property theoretically. The odd and even waveguide modes exhibit different behaviors when the cuts are set asymmetrically in the slits. Particularly, it is shown that the transmission dips of transmission spectrum for this compound periodic structure can be realized alternately by shifting the position of cuts in the slit. The effect of cut size on the phase resonances in the proposed metallic grating is also identified, and the underlying physics is discussed by the simulated field and phase maps.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
    [CrossRef]
  2. Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005).
    [CrossRef]
  3. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
    [CrossRef]
  4. Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009).
    [CrossRef]
  5. B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008).
    [CrossRef]
  6. D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005).
    [CrossRef] [PubMed]
  7. D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006).
    [CrossRef]
  8. M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
    [CrossRef]
  9. H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
    [CrossRef]
  10. J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
    [CrossRef] [PubMed]
  11. J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
    [CrossRef]
  12. Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009).
    [CrossRef]
  13. Y. Wang, Y. Wang, Y. Zhang, and S. Liu,"Transmission through metallic array slits with perpendicular cuts," Opt. Express 17(7), 5014-5022 (2009).
    [CrossRef] [PubMed]
  14. Y. B. Chen, J. S. Chen, and P. F. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17(12), 9789-9803 (2009).
    [CrossRef] [PubMed]
  15. Z. J. Sun and X. L. Zuo, "Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities," Opt. Lett. 34(9), 1411-1413 (2009).
    [CrossRef] [PubMed]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).
  17. M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).

2009

Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009).
[CrossRef]

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

Y. Wang, Y. Wang, Y. Zhang, and S. Liu,"Transmission through metallic array slits with perpendicular cuts," Opt. Express 17(7), 5014-5022 (2009).
[CrossRef] [PubMed]

Z. J. Sun and X. L. Zuo, "Tuning resonant optical transmission of metallic nanoslit arrays with embedded microcavities," Opt. Lett. 34(9), 1411-1413 (2009).
[CrossRef] [PubMed]

Y. B. Chen, J. S. Chen, and P. F. Hsu, "Impacts of geometric modifications on infrared optical responses of metallic slit arrays," Opt. Express 17(12), 9789-9803 (2009).
[CrossRef] [PubMed]

2008

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

2006

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006).
[CrossRef]

2005

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005).
[CrossRef]

1999

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Beruete, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005).
[CrossRef]

Chao, X. B.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Chen, J. S.

Chen, L.

Chen, X. S.

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Chen, Y. B.

Depine, R. A.

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Hamilton, O. K.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

He, M. D.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Hibbins, A. P.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Hsu, P. F.

Jin, G.

Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Jin, Y.

Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Liu, J. Q.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Liu, S.

Liu, Z.

Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Navarro-Cia, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
[CrossRef]

Podivilov, E.

B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
[CrossRef]

Rance, H. J.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Sambles, J. R.

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

Skigin, D. C.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006).
[CrossRef]

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Sorolla, M.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

Sturman, B.

B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Sun, Z. J.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Wan, Q.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Wang, L. L

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Wang, L. L.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Wang, Y.

Wei, J. N.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Yao, J.

Ye, Y. Q.

Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009).
[CrossRef]

Zhai, X.

J. Q. Liu, M. D. He, X. Zhai, L. L. Wang, S. Zhe, L. Chen, Q. Wan, and J. Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express,  17(3), 1859-1864 (2009).
[CrossRef] [PubMed]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Zhang, Y.

Zhe, S.

Zou, B. S.

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

Zuo, X. L.

Appl. Phys. Lett.

M. Navarro-Cia, D. C. Skigin, M. Beruete, and M. Sorolla, "Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime," Appl. Phys. Lett. 94(4), 091107 (2009).
[CrossRef]

H. J. Rance, O. K. Hamilton, J. R. Sambles, and A. P. Hibbins, "Phase resonances on metal gratings of identical, equally spaced alternately tapered slits," Appl. Phys. Lett. 95(4), 041905 (2009).
[CrossRef]

M. D. He, L. L. Wang, J. Q. Liu, X. Zhai, Q. Wan, X. S. Chen, B. S. Zou, "Controllable light transmission through cascaded metal films perforated with periodic hole arrays," Appl. Phys. Lett. 93(22), 221909 (2008).
[CrossRef]

J. Appl. Phys.

J. Q. Liu, X. B. Chao, J. N. Wei, M. D. He, L. L Wang, Q. Wan, and Y. Wang, "Multiple enhanced transmission bands throuth compound periodic array of rectangular holes," J. Appl. Phys. 106(9), 093108 (2009).
[CrossRef]

Z. Liu and G. Jin, "Phase effects in the enhanced transmission through compound subwavelength rectangular hole arrays," J. Appl. Phys. 106(6), 063122 (2009).
[CrossRef]

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays, Nature (London) 391, 667-669 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

B. Sturman and E. Podivilov, "Theory of extraordinary light transmission through arrays of subwavelength slits," Phys. Rev. B 77(7), 075106 (2008).
[CrossRef]

Phys. Rev. E

Y. Q. Ye and Y. Jin, "Enhanced transmission of transverse electric waves through subwavelength slits in a thin metallic film," Phys. Rev. E 80(3), 036606 (2009).
[CrossRef]

D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74(4) 046606 (2006).
[CrossRef]

Phys. Rev. Lett.

D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95(21), 217402 (2005).
[CrossRef] [PubMed]

Q. Cao and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88(5), 057403 (2005).
[CrossRef]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83(14), 2845-2848 (1999).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics. The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).

E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic illustration of the compound metallic grating with period p, composed of perpendicular cuts in each slit. (b) A unit cell of the compound metallic grating with slit width w and thickness h. The position of each perpendicular cut and its widths w 1, w 2 and depths w c1, w c2 are shown in the unit cell.

Fig. 2.
Fig. 2.

Transmission spectra of compound metallic gratings, where the positions of perpendicular cuts are changed. The solid curve marked with “*” denotes the transmission spectrum of metallic grating without perpendicular cuts. The value of insets show the positions (depth h 2) of one cut in the compound unit cell and the other cut is located on the center of slit (h 1 = 750 nm). Here, the width and depth of perpendicular cuts are identical, namely w c1 = w c2 = 200 nm, w 1 = w 2 = 200 nm.

Fig. 3.
Fig. 3.

The magnitudes of electric field |Ex | distribution at wavelength λ 1 = 1800 nm in (a), λ 2 = 2040 nm in (d), λ 3 = 1850 nm in (g), and λ 4 = 2220 nm in (h). (b) and (e) designate the magnitudes of magnetic field |Hz | distribution at wavelengths λ 1 = 1800 nm and λ 2 = 2040 nm. (c), (f), and (i) demonstrate the relative phase distribution of magnetic field for compound gratings at λ 1 = 1800 nm, λ 2 = 2040 nm, λ 4 = 2220 nm, respectively. The dark regions represent the metal of gratings.

Fig. 4.
Fig. 4.

Transmission spectra for compound metallic gratings, containing perpendicular cuts with size differences. (a) show the curves for the cases w 2 = 200,280,800 nm, and w 1 = 200 nm, w c1 = w c2 = 200 nm, respectively. (b) demonstrate transmission spectra for the cases w c2 = 200,270,290 nm, and the w c1 = 200nm, w 1 = w 2 = 200nm

Metrics