Abstract

Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
    [CrossRef]
  2. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Display Technol. 3(2), 133–148 (2007).
    [CrossRef]
  3. I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
    [CrossRef]
  4. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
    [CrossRef] [PubMed]
  5. Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
    [CrossRef]
  6. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [CrossRef]
  7. E. B. Grann, M. G. Varga, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12(2), 333–339 (1995).
    [CrossRef]
  8. S.-I. Inoue, S. Yokoyama, and Y. Aoyagi, “Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals,” Opt. Express 16(4), 2461–2468 (2008).
    [CrossRef] [PubMed]
  9. V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
    [CrossRef]
  10. M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
    [CrossRef]
  11. C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
    [CrossRef]
  12. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
    [CrossRef]
  13. C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
    [CrossRef]
  14. C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
    [CrossRef]
  15. Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
    [CrossRef]
  16. Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
    [CrossRef]
  17. A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
    [CrossRef]
  18. X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
    [CrossRef]
  19. C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006).
    [CrossRef]
  20. K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
    [CrossRef] [PubMed]
  21. Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Holographic realization of two-dimensional photonic crystal structures on silicon substrates,” Integrated Photonics and Nanophotonics Research and Applications (IPNRA’09), paper IWD5, Honolulu, Hawaii, USA (2009).
  22. Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
    [CrossRef]
  23. J. D. Joannapolous, R. D. Meade, and J. N. Winn, “Photonic crystals – molding the flow of light,” (Princeton University Press, 1995)
  24. S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
    [CrossRef]

2010

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
[CrossRef]

2009

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

2008

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

S.-I. Inoue, S. Yokoyama, and Y. Aoyagi, “Direct determination of photonic band structure for waveguiding modes in two-dimensional photonic crystals,” Opt. Express 16(4), 2461–2468 (2008).
[CrossRef] [PubMed]

2007

A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Display Technol. 3(2), 133–148 (2007).
[CrossRef]

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

2006

C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006).
[CrossRef]

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

2004

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

2003

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[CrossRef]

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

2002

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

2001

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
[CrossRef]

1999

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

1995

Agio, M.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Andreani, L.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Aoyagi, Y.

Astratov, V.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Ayón, A. A.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

Bai, S.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

Bellutti, P.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Belotti, M.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Benisty, H.

A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” J. Display Technol. 3(2), 133–148 (2007).
[CrossRef]

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Bettotti, P.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Block, I. D.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Braff, R.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Chan, L. L.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Chang, W.-H.

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Chang, Y.-F.

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

Chao, W. C.

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

Chao, W.-C.

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Checoury, X.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Chelnokov, A.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Chen, H. L.

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

Chen, H.-L.

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Chen, P.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[CrossRef]

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

Choi, C.-H.

C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006).
[CrossRef]

Chou, Q.-R.

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

Chou, S. Y.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Combrie, S.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Culshaw, I.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Cunningham, B. T.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Dal Negro, L.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

David, A.

De La Rue, R.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Eisenbraun, E.

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Ergen, O.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Fan, Z.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Gaburro, Z.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Galli, M.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Gao, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Ge, H.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Gee, J. M.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
[CrossRef]

Grann, E. B.

Guizzetti, G.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Hsieh, C. I.

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

Hsieh, C.-I.

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Hung, Y.-J.

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
[CrossRef]

Inoue, S.-I.

Javey, A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Kapadia, R.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Kim, C.-J.

C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006).
[CrossRef]

Ko, D.-H.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Ko, F. H.

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

Krauss, T.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Kuo, C.-W.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[CrossRef]

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

Lee, C.-H.

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

Lee, S.-L.

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
[CrossRef]

Leu, P. W.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Lin, C. C.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

Lin, C.-H.

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Lin, J.-Y.

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Lourtioz, J.-M.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Lu, G.

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Lui, A.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Marabelli, F.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Morton, K. J.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

Nieberg, G.

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

Pan, Y.-T.

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
[CrossRef]

Patrini, M.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Pavesi, L.

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Pommet, D. A.

Rathore, A. A.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Ruby, D. S.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
[CrossRef]

Ruebusch, D. J.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Russo, O. L.

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Sawin, H. H.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

Schmidt, M. A.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

Shiu, J.-Y.

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[CrossRef]

Skolnick, M.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Somorjai, G. A.

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

Stevenson, R.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Varga, M. G.

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Wang, X.

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Weisbuch, C.

Whittaker, D.

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Wu, W.

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Yokoyama, S.

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

Zaidi, S. H.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
[CrossRef]

Zeng, W.

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y.-F. Chang, Q.-R. Chou, J.-Y. Lin, and C.-H. Lee, “Fabrication of high-aspect-ratio silicon nanopillar arrays with the conventional reactive ion etching technique,” Appl. Phys., A Mater. Sci. Process. 86(2), 193–196 (2006).
[CrossRef]

Chem. Mater.

C.-W. Kuo, J.-Y. Shiu, and P. Chen, “Size- and shape-controlled fabrication of large-area periodic nanopillar arrays,” Chem. Mater. 15(15), 2917–2920 (2003).
[CrossRef]

IEEE Trans. Electron. Dev.

S. H. Zaidi, D. S. Ruby, and J. M. Gee, “Characterization of random reactive ion etched-textured silicon soar cells,” IEEE Trans. Electron. Dev. 48(6), 1200–1206 (2001).
[CrossRef]

J. Display Technol.

J. Electrochem. Soc.

A. A. Ayón, R. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, “Characterization of a time multiplexed inductively coupled plasma etcher,” J. Electrochem. Soc. 146(1), 339–349 (1999).
[CrossRef]

J. Opt.

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Photonic bandgap analysis of photonic crystal slabs with elliptical holes and their formation with laser holography,” J. Opt. 12(1), 015102 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. B

C.-W. Kuo, J.-Y. Shiu, P. Chen, and G. A. Somorjai, “Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10nm resolution,” J. Phys. Chem. B 107(37), 9950–9953 (2003).
[CrossRef]

J. Vac. Sci. Technol. B

Z. Yu, H. Gao, W. Wu, H. Ge, and S. Y. Chou, “Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff,” J. Vac. Sci. Technol. B 21(6), 2874–2877 (2003).
[CrossRef]

X. Wang, W. Zeng, G. Lu, O. L. Russo, and E. Eisenbraun, “High aspect ratio Bosch etching of sub-0.25 μm trenches for hyperintegration applications,” J. Vac. Sci. Technol. B 25(4), 1376–1381 (2007).
[CrossRef]

Microelectron. Eng.

C. I. Hsieh, H. L. Chen, W. C. Chao, and F. H. Ko, “Optical properties of two-dimensional photonic-bandgap crystals characterized by spectral ellipsometry,” Microelectron. Eng. 73–74, 920–926 (2004).
[CrossRef]

C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, “Optical characterization of two-dimensional photonic crystals based on spectroscopic ellipsometry with rigorous coupled-wave analysis,” Microelectron. Eng. 83(4-9), 1798–1804 (2006).
[CrossRef]

Nano Lett.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9(7), 2742–2746 (2009).
[CrossRef] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[CrossRef]

Nano Res.

Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and A. Javey, “Challenges and prospects of nanopillar-based solar cells,” Nano Res. 2(11), 829–843 (2009).
[CrossRef]

Nanotechnology

C.-H. Choi and C.-J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotechnology 17(21), 5326–5333 (2006).
[CrossRef]

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, “Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching,” Nanotechnology 19(34), 345301 (2008).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

V. Astratov, D. Whittaker, I. Culshaw, R. Stevenson, M. Skolnick, T. Krauss, and R. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60(24), 16255–16258 (1999).
[CrossRef]

M. Galli, M. Agio, L. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, L. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, and P. Bellutti, “Spectroscopy of photonic bands in macroporous silicon photonic crystals,” Phys. Rev. B 65(11), 113111 (2002).
[CrossRef]

Proc. IEEE

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94(5), 997–1023 (2006).
[CrossRef]

Sens. Actuators B Chem.

I. D. Block, L. L. Chan, and B. T. Cunningham, “Photonic crystal optical biosensor incorporating structured low-index porous dielectric,” Sens. Actuators B Chem. 120(1), 187–193 (2006).
[CrossRef]

Other

J. D. Joannapolous, R. D. Meade, and J. N. Winn, “Photonic crystals – molding the flow of light,” (Princeton University Press, 1995)

Y.-J. Hung, S.-L. Lee, and Y.-T. Pan, “Holographic realization of two-dimensional photonic crystal structures on silicon substrates,” Integrated Photonics and Nanophotonics Research and Applications (IPNRA’09), paper IWD5, Honolulu, Hawaii, USA (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) comparison of process flow between conventional Bosch process and SDRIE process (b) fabrication procedures of silicon photonic crystals by holographic lithography and SDRIE

Fig. 2
Fig. 2

SEM photos of (a) resultant 2D PR/ARC templates and (b) resultant 2D silicon photonic crystals

Fig. 4
Fig. 4

(a) Measured optical reflection spectrum of bare silicon, 2D PR/ARC templates on silicon, tapered and non-tapered silicon PhCs with close-to-normal (8-degree) incidence (b) Calculated TEphc-mode PBG diagram of our silicon photonic crystals

Fig. 3
Fig. 3

(a) photo of the resultant PhC sample (b) photograph of the testing setup

Fig. 5
Fig. 5

Measured 40- and 70-degree angled-incident reflection spectra along symmetry points of hexagonal silicon PhCs for (a) TM- and (b) TE-polarization

Fig. 6
Fig. 6

2D contour maps of measured reflection spectra of tapered silicon photonic crystals along ΓM-direction under different incident angles for (a) TE- and (b) TM-polarization incidence

Fig. 7
Fig. 7

Measured and calculated reflection spectra at different incident angles along the ΓM-direction of hexagonal silicon PhCs for (a) TM- and (b) TE- polarization. For clarify, the offset of curves are shown inside the plots.

Fig. 8
Fig. 8

Measured spectra of PBG ellipsometry parameters (a) tan(ψ) and (b) cos(Δ) along symmetry points of the hexagonal silicon PhCs. Arrows shown in the plots indicate the PBG positions.

Fig. 9
Fig. 9

Calculated 70-degree angled-incident (a) reflection and (b) absorption spectra of silicon PhCs in the TM polarization for different pillar heights. The lattice constant of PhC pillars is set to 375 nm.

Fig. 10
Fig. 10

The variation of the calculated (a) reflection and (b) absorption spectra of silicon PhCs with the lattice constant (P), along the TM polarization at 70-degree incident angle. The height of PhC pillars is set to 800 nm.

Metrics