Abstract

An EO phase modulator having transparent conducting oxide electrodes and an inverted rib waveguide structure is demonstrated. This new modulator geometry employs an EO polymer having an in-device r33 = 60pm/V. The measured half-wave voltage Vπ of these devices ranges from 5.3V to 11.2V for 3.8 and 1.5 mm long devices, respectively. The lowest VπL figure-of-merit corresponds to 0.6V-cm (7.2mW-cm2 of power length product) in a dual-drive configuration. The trade-off between Vπ, insertion loss and modulation bandwidth is systematically analyzed. An optimized high-speed structure is proposed, with numerical simulation showing that this new structure and an in-device r33 = 150pm/V, can achieve Vπ = 0.5V in a 5mm long active length with dual drive operation. The insertion loss is targeted at 6dB, and a 3dB optical modulation bandwidth can reach > 40GHz.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. C. Chang, RF Photonics Technology in Optical Fiber Links, Cambridge University Press (2002).
  2. M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
    [CrossRef]
  3. B. Kuhlow, “Modulators,” in Laser Fundamentals Part 2, Springer Berlin Heidelberg (2006).
  4. Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
    [CrossRef]
  5. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
    [CrossRef] [PubMed]
  6. T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
    [CrossRef] [PubMed]
  7. Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
    [CrossRef]
  8. E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
    [CrossRef]
  9. H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
    [CrossRef] [PubMed]
  10. G. Xu, Z. Liu, J. Ma, B. Liu, S. T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A.-K. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380–7385 (2005).
    [CrossRef] [PubMed]
  11. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
    [CrossRef]
  12. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
    [CrossRef]
  13. D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
    [CrossRef]
  14. R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
    [CrossRef]
  15. Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
    [CrossRef]
  16. R. Harold Fetterman and William H. Steier, “High-Speed Polymer Optical Modulators and Their Applications,” in High-speed photonic devices, by Nadir Dagli, Taylor & Francis (2003)
  17. J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures,” Appl. Phys. Lett. 62(7), 705 (1993).
    [CrossRef]
  18. M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
    [CrossRef]
  19. M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
    [CrossRef]
  20. X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
    [CrossRef]
  21. M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
    [CrossRef]
  22. R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
    [CrossRef]
  23. A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
    [CrossRef]
  24. L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
    [CrossRef] [PubMed]
  25. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
    [CrossRef]
  26. COMSOL Multiphysics 3.5, COMSOL AB.
  27. Lumerical Mode Solutions 3.01 trial, Lumerical Solutions Inc.
  28. S. Y. Wang and S. H. Lin, “High speed III-V electrooptic waveguide modulators at λ = 1.3 μm,” J. Lightwave Technol. 6(6), 758–771 (1988).
    [CrossRef]
  29. High Frequency Structure Simulator 9.1, Ansoft Corp.

2008

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
[CrossRef]

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

2007

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

2006

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

2005

2002

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

2001

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

2000

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

1996

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

1993

J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures,” Appl. Phys. Lett. 62(7), 705 (1993).
[CrossRef]

1988

S. Y. Wang and S. H. Lin, “High speed III-V electrooptic waveguide modulators at λ = 1.3 μm,” J. Lightwave Technol. 6(6), 758–771 (1988).
[CrossRef]

1980

M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
[CrossRef]

Akelaitis, A. J. P.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Albonesi, D. H.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Asahi, R.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Babcock, J. R.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Bale, D. H.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Barklund, A.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Barklund, A. M.

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Bechtel, J. H.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Belot, J. A.

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Benedict, J. B.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Brown, E. C.

E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Bube, R. H.

M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
[CrossRef]

Cariati, E.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Chang, R. P. H.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Chen, A.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Chen, B.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Chen, G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Chen, H.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Cheng, Y.-J.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Choi, D.-H.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Corless, R. M.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Dalton, L. R.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Davies, J. A.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Dinu, R.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Dravid, V. P.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Du, G.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Edleman, N. L.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Eichinger, B. E.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Facchetti, A.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

Fahrenbruch, A. L.

M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
[CrossRef]

Fang, Y.

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Fauchet, P. M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Firestone, K. A.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Frattarelli, D. L.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

Freeman, A. J.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Friedman, E. G.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Gonnet, G. H.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Gray, T.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Hare, D. E. G.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Haurylau, M.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Herman, W. N.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Ho, S. T.

Ho, S.-T.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Huang, D.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Huang, S.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Jang, S.-H.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Jeffrey, D. J.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Jen, A. K.-Y.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Jen, A.-K.

Jiang, H.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Jiang, X.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Jin, D.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Ka, J.-W.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Kang, H.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Kang, J.-W.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Kannewurf, C. R.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

Kim, T.-D.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Knuth, D. E.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Koening, M. K.

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Koide, Y.

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Lane, M.

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

Lane, M. A.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Li, B.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Li, M.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Liao, Y.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Lin, S. H.

S. Y. Wang and S. H. Lin, “High speed III-V electrooptic waveguide modulators at λ = 1.3 μm,” J. Lightwave Technol. 6(6), 758–771 (1988).
[CrossRef]

Lin, W.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Liu, B.

Liu, X.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Liu, Z.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

G. Xu, Z. Liu, J. Ma, B. Liu, S. T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A.-K. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Lu, G.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

Luo, J.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

G. Xu, Z. Liu, J. Ma, B. Liu, S. T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A.-K. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

Luo, J. K.

J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures,” Appl. Phys. Lett. 62(7), 705 (1993).
[CrossRef]

Ma, J.

Macchioni, A.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Marks, T. J.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

G. Xu, Z. Liu, J. Ma, B. Liu, S. T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A.-K. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Markworth, P. R.

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Mason, T. O.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Mathine, D.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Metz, A. W.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Miller, E.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Moolayil, M.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Nelson, N. A.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Norwood, R. A.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Olbricht, B. C.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Olson, D. J.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Overney, R. M.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Park, D. H.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Peyghambarian, N.

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Poeppelmeier, K. R.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Polishak, B. M.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Ratner, M. A.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Reid, P. J.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Righetto, S.

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Robinson, B. H.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Rommel, H.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Shi, Y.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Shi, Z.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Steier, W. H.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Stern, C. L.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Sullivan, P. A.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

Takahashi, S.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Thomas, H.

J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures,” Appl. Phys. Lett. 62(7), 705 (1993).
[CrossRef]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Tordin, E.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

Tsai, M. J.

M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
[CrossRef]

Tucker, N.

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

Ugo, R.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Wang, A.

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Wang, J.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Wang, L.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

G. Xu, Z. Liu, J. Ma, B. Liu, S. T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A.-K. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380–7385 (2005).
[CrossRef] [PubMed]

Wang, S. Y.

S. Y. Wang and S. H. Lin, “High speed III-V electrooptic waveguide modulators at λ = 1.3 μm,” J. Lightwave Technol. 6(6), 758–771 (1988).
[CrossRef]

Wang, X.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Wang, Y.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

Wegener, S. L.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

Xu, G.

Yan, M.

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Yang, S.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Yang, Y.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

Yick, A.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Yoon, M. H.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

Yu, G.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Zhang, C.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Zhang, H.

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

Zhang, J.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

Zheng, L.

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

Zhou, X.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

Zhu, P.

Zuccaccia, C.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

Adv. Comput. Math.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math. 5(1), 329–359 (1996).
[CrossRef]

Appl. Phys. Lett.

M. Yan, Y. Koide, J. R. Babcock, P. R. Markworth, J. A. Belot, T. J. Marks, and R. P. H. Chang, “Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates,” Appl. Phys. Lett. 79(11), 1709 (2001).
[CrossRef]

Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65V half wave voltage at 1550nm,” Appl. Phys. Lett. 91(9), 093505 (2007).
[CrossRef]

Y. Shi, W. Lin, D. J. Olson, J. H. Bechtel, H. Zhang, W. H. Steier, C. Zhang, and L. R. Dalton, “Electro-optic polymer modulators with 0.8 V half-wave voltage,” Appl. Phys. Lett. 77(1), 1–3 (2000).
[CrossRef]

J. K. Luo and H. Thomas, “Transport properties of indium tin oxide/p-InP structures,” Appl. Phys. Lett. 62(7), 705 (1993).
[CrossRef]

M. Yan, M. Lane, C. R. Kannewurf, and R. P. H. Chang, “Highly conductive epitaxial CdO2 thin films prepared by pulsed laser depostion,” Appl. Phys. Lett. 78(16), 2342 (2001).
[CrossRef]

Chem. Mater.

Y.-J. Cheng, J. Luo, S. Huang, X. Zhou, Z. Shi, T.-D. Kim, D. H. Bale, S. Takahashi, A. Yick, B. M. Polishak, S.-H. Jang, L. R. Dalton, P. J. Reid, W. H. Steier, and A. K.-Y. Jen, “Donor-Acceptor Thiolated Polyenic Chromophores Exhibiting Large Optical Nonlinearity and Excellent Photostability,” Chem. Mater. 20(15), 5047–5054 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Haurylau, G. Chen, H. Chen, J. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip Optical Interconnect Roadmap: Challenges and Critical Directions,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1699–1705 (2006).
[CrossRef]

J. Am. Chem. Soc.

P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D.-H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, and L. R. Dalton, “Theory-guided design and synthesis of multichromophore dendrimers: an analysis of the electro-optic effect,” J. Am. Chem. Soc. 129(24), 7523–7530 (2007).
[CrossRef] [PubMed]

T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, and A. K.-Y. Jen, “Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses,” J. Am. Chem. Soc. 129(3), 488–489 (2007).
[CrossRef] [PubMed]

H. Kang, A. Facchetti, H. Jiang, E. Cariati, S. Righetto, R. Ugo, C. Zuccaccia, A. Macchioni, C. L. Stern, Z. Liu, S.-T. Ho, E. C. Brown, M. A. Ratner, and T. J. Marks, “Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies,” J. Am. Chem. Soc. 129(11), 3267–3286 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

M. J. Tsai, A. L. Fahrenbruch, and R. H. Bube, “Sputtered oxide/indium phosphide junctions and indium phosphide surfaces,” J. Appl. Phys. 51(5), 2696 (1980).
[CrossRef]

J. Lightwave Technol.

S. Y. Wang and S. H. Lin, “High speed III-V electrooptic waveguide modulators at λ = 1.3 μm,” J. Lightwave Technol. 6(6), 758–771 (1988).
[CrossRef]

J. Phys. Chem. B

E. C. Brown, T. J. Marks, and M. A. Ratner, “Nonlinear response properties of ultralarge hyperpolarizability twisted π-system donor-acceptor chromophores. Dramatic environmental effects on response,” J. Phys. Chem. B 112(1), 44–50 (2008).
[CrossRef]

J. Phys. Chem. C

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin, R. Ugo, C. Zuccaccia, A. Macchioni, S. L. Wegener, C. L. Stern, M. A. Ratner, and T. J. Marks, “Twisted π-Electron System Electro-Optic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Non-Bonded Repulsions,” J. Phys. Chem. C 112(21), 8005–8015 (2008).
[CrossRef]

Mats. Res. Soc. Bull.

A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, “Chemical and Thin Film Strategies for new Transparent Conducting Oxides,” Mats. Res. Soc. Bull. 25, 45–51 (2000).
[CrossRef]

Nat. Mater.

L. Wang, M. H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, “High-performance transparent inorganic-organic hybrid thin-film n-type transistors,” Nat. Mater. 5(11), 893–900 (2006).
[CrossRef] [PubMed]

Nat. Photonics

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T.-D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol–gel waveguide modulators with exceptionally large electro–optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

X. Wang, S. Yang, J. Wang, M. Li, X. Jiang, G. Du, X. Liu, and R. P. H. Chang, “Structural and optical properties of ZnO films by plasma-assisted MOCVD,” Opt. Quantum Electron. 34(9), 883–891 (2002).
[CrossRef]

Proc. SPIE

D. Jin, D. Huang, B. Chen, H. Chen, L. Zheng, A. Barklund, G. Yu, E. Miller, M. Moolayil, B. Li, and R. Dinu, “Low half-wave voltage modulators using nonlinear optical polymers,” Proc. SPIE 6653, 66530Q (2007).
[CrossRef]

R. Dinu, D. Jin, D. Huang, M. K. Koening, A. M. Barklund, and Y. Fang, “T. C. Parker Z. Shi, J. Luo and A. K.-Y. Jen, “Low-voltage electro-optic polymer modulators,” Proc. SPIE 6243, 62430G (2006).
[CrossRef]

Thin Solid Films

R. Asahi, A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, V. P. Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, “First-Principles Calculations for Understanding High Conductivity and Optical Transparency in InxCd1-xO Films,” Thin Solid Films 411(1), 101–105 (2002).
[CrossRef]

Other

High Frequency Structure Simulator 9.1, Ansoft Corp.

W. S. C. Chang, RF Photonics Technology in Optical Fiber Links, Cambridge University Press (2002).

COMSOL Multiphysics 3.5, COMSOL AB.

Lumerical Mode Solutions 3.01 trial, Lumerical Solutions Inc.

R. Harold Fetterman and William H. Steier, “High-Speed Polymer Optical Modulators and Their Applications,” in High-speed photonic devices, by Nadir Dagli, Taylor & Francis (2003)

B. Kuhlow, “Modulators,” in Laser Fundamentals Part 2, Springer Berlin Heidelberg (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Evolution of a conventional organic EO modulator structure to a TCO electrode-based organic EO modulator design using a side conduction geometry. (a) Conventional organic EO modulator structure having two thick waveguide cladding layers that separate the metal electrodes from the EO optical waveguide core to reduce metal-induced optical loss. (b) TCO-based modulator having a top-down conduction geometry utilizing a TCO material as the waveguide cladding layers to conduct the driving voltage directly from the metal electrodes to the EO waveguide core. This geometry is limited by the high refractive index of typical TCO materials versus that of organic EO materials. (c) TCO-based EO modulator design with a side conduction geometry utilizing a pre-etched trench structure in the bottom cladding layer to form an effective optical waveguide, and two thin TCO layers acting as bridge electrodes to laterally deliver the switching voltage to the waveguiding EO core from metal side electrodes.

Fig. 2
Fig. 2

(a) Inverted rib waveguide structure used for the present demonstration of a TCO electrode-based organic EO modulator; and SEM cross-section image of the fabricated device; (b) Measured waveforms of the switching voltage and the detected output light intensity. The measurement was made at λ = 1.3µm, with a driving voltage frequency of 1kHz. (c) Earlier device structure from ref. [10]. (d) Mode pattern for TE / TM mode and a photo of the mode taken with a CCD camera. In the simulation, we assume nEO = 1.68 and nTCO = 2.0. The new structure has higher ГEO ≥ 95% than in previous work because the top cladding layer is now air rather than NOA74. The optical mode overlapping factor in the top TCO layer, the EO layer and the bottom TCO layer for both TM and TE mode are listed. The total TCO overlapping factor is ГTCO = 0.78% for TM mode and ГTCO = 1.71% for TE mode.

Fig. 3
Fig. 3

Fabrication process for the side conduction TCO electrode-based EO modulator of Fig. 1(c).

Fig. 4
Fig. 4

(a) Buried waveguide structure and the resulting optical mode pattern. The EO waveguide core (nEO = 1.6) is buried within two side cladding layers (nscl = 1.35) and a bottom cladding layer (nbcl = 1.35). dcor = 1.3μm and Wcor = 1.2μm . The optical waveguide is single mode in both the horizontal and vertical directions. The effective refractive index neff = 1.467 and the TM optical mode confinement factor in the waveguide core ГEO = 83% (b) buried waveguide with two TCO electrodes (nTCO = 1.9) and buffer layers, and the optical mode pattern. The bottom buffer layer is 300nm thick and the top buffer layer is 100nm thick. The arrows show the direction of the E-component of the optical mode.

Fig. 5
Fig. 5

(a) Buried waveguide structure with two TCO electrodes and buffer layers. Two side copper electrodes are also included to find the metal induced optical loss coefficient αMet . nscl = nbcl = 1.35. dcor = 1.3μm, Wcor = 1.2μm, dBbuff = 300nm, dTbuff = 100nm, dTCO = 100nm. (b) Effective refractive index and group index of the optical waveguide for TM mode c) The optical mode confinement factor in the EO waveguide core ГEO and the optical mode overlapping factor in the two TCO layers ГTCO = ГBTCO + ГTTCO , under different wavelength. d) Metal-induced optical loss coefficient αMet versus the width of the gap Wgap .

Fig. 6
Fig. 6

Transmission line model for the TCO electrode-based EO modulator. The entrance point of the TCO loaded EO active region is defined as x = 0. The termination point is defined as x = L.

Fig. 7
Fig. 7

Theoretical upper limit of the microwave attenuation coefficient αRF versus rRC under different active lengths L. Here we assume perfect impedance match and velocity match.

Fig. 8
Fig. 8

High frequency structure design for a TCO-electrode based organic EO modulator. The structure comprises a pair of high speed metallic transmission lines and two TCO electrodes conducting the voltage from the metallic transmission line to the EO optical waveguide core. In the numerical simulation, we use Wcor = 1.2μm, Wgap = 1.6μm, Wcopper = 250μm, dcor = 1.3μm, dTbuff = 100nm, dBbuff = 300nm, del-sep = dcopper = dcor + dBbuff + dTbuff = 1.7μm, dTCO = 100nm, dbcl = 3μm, dsub = 100μm, εEO = εTCO = 3, εscl = εbcl = εsub = 2.1. In practice, a low-k substrate is required.

Fig. 9
Fig. 9

Simulation results for modulators having a TCO electrode loaded coplanar transmission line (the active region), as shown in Fig. 8. (a) Characteristic impedance Z0 under different σTCO . (b) Effective RF refractive index c) Microwave attenuation coefficient αRF d) TCO-RC voltage drop coefficient rRC .

Fig. 10
Fig. 10

Microwave attenuation coefficient αRF versus the width of the TCO overlapping area in the modulator structure shown.

Fig. 11
Fig. 11

Overall frequency response of the average applied voltage found by plugging the numerical results given in Fig. 9 into Eq. (4).

Tables (5)

Tables Icon

Table 1 Projected enhancement of EO modulator power-size figure-of-merit using a TCO electrode-based device versus a conventional structure. A TCO-based structure can enhance an organic EO modulator power-size figure-of-merit by 10x-100x versus a conventional device structure using the same EO material. We assume nEO = 1.6 and ГEO = 80%.

Tables Icon

Table 2 Detailed measurement results of TCO electrode-based organic EO modulators.

Tables Icon

Table 3 Details of the optical insertion loss caused by each modulator component

Tables Icon

Table 4 Relationship between ГTCO and the thicknesses of buffer layers. The thickness of the TCO layer TTCO = 100nm, and here we assume λ = 1.55μm. The data is for TM mode.

Tables Icon

Table 5 Complete modeling result of the TCO based EO modulator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V π L = λ d e l s e p n 3 r Γ
η o v e r l a p = R e [ ( E 1 × H 2 * · d S ) ( E 2 × H 1 * · d S ) E 1 × H 1 * · d S ] 1 R e ( E 2 × H 2 * · d S )
V e f f ( x , ω ) = V a p p l V E O V m e t a l T 1 Γ L Γ S e 2 γ R F L [ e γ R F x e j ω x v g o p t + Γ L e γ R F ( 2 L z ) e j ω x v g o p t ]
V a v ( ω ) = ( 1 / L ) Re ( 0 L V e f f ( x , f ) d x ) = V a p p l r R C Re [ r R E F ( 1 e γ F W L γ F W L + Γ L e γ F W L e 2 γ R F L γ B W L ) ]
V a v e f f ( f ) = V a p p l r R C ( f ) ( 1 e α R F ( f ) L ) α R F ( f ) L
r R C ( f B W ) ( 1 e α R F ( f B W ) L ) α R F ( f B W ) L = V a v e f f ( f B W ) V a p p l = 0.5
1 e x = 0.5 r R C ( f B W ) x ,     here  x = α R F ( f B W ) L
x = α R F ( f B W ) L = W ( r R C ( f B W ) 0.5 e r R C ( f B W ) 0.5 ) + r R C ( f B W ) 0.5

Metrics