Abstract

We describe in detail a procedure for maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers and the physics behind this procedure. First, we determine the key parameters that govern the design. Second, we find the conditions for the fiber to be endlessly single-mode; the fiber should be endlessly single-mode to maintain high nonlinearity and low coupling loss. We find that supercontinuum generation in As2Se3 fibers proceeds in two stages — an initial stage that is dominated by four-wave mixing and a later stage that is dominated by the Raman-induced soliton self-frequency shift. Third, we determine the conditions to maximize the Stokes wavelength that is generated by four-wave mixing in the initial stage. Finally, we put all these pieces together to maximize the bandwidth. We show that it is possible to generate an optical bandwidth of more than 4 μm with an input pump wavelength of 2.5 μm using an As2Se3 fiber with an air-hole-diameter-to-pitch ratio of 0.4 and a pitch of 3 μm. Obtaining this bandwidth requires a careful choice of the fiber’s waveguide parameters and the pulse’s peak power and duration, which determine respectively the fiber’s dispersion and nonlinearity.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  2. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers," J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  3. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083.
    [PubMed]
  4. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
    [CrossRef]
  5. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161.
    [CrossRef] [PubMed]
  6. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Midinfrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
    [CrossRef] [PubMed]
  7. C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
    [CrossRef]
  8. J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, S. (S.) Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Broadband IR supercontinuum generation using single crystal sapphire fibers," Opt. Express 16, 4085-4093 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4085.
    [CrossRef] [PubMed]
  9. L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, "IR supercontinuum generation in As-Se photonic crystal fiber," in Proc. Advanced Solid State Photonics, Vienna, Austria, paper TuC5 (2005).
  10. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glass for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005).
    [CrossRef]
  11. P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
    [CrossRef] [PubMed]
  12. V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
    [CrossRef]
  13. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  14. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Raman response function and supercontinuum generation in chalcogenide fiber," in Proc. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, paper CMDD2, (2008).
  15. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency shift," in Proc. Conference on Optical Fiber Communications (OFC), San Diego, CA, paper OWU6, (2009).
  16. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  17. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  18. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
    [CrossRef] [PubMed]
  19. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  20. H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons, Inc., New York, 1999.
  21. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
    [CrossRef]
  22. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  23. M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
    [CrossRef]
  24. M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
    [CrossRef] [PubMed]
  25. C. Xia, M. Kumar, M. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-865.
    [CrossRef] [PubMed]
  26. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  27. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
    [CrossRef] [PubMed]
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  29. K. Saitoh and M. Koshiba, "Numerical modeling of photonic crystal fibers," J. Lightwave Technol. 23, 3580-3590 (2005).
    [CrossRef]
  30. M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method," IEICE Trans. Electron. 85-C, 881-888 (2002).
  31. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 291739-1741, (2004).
    [CrossRef] [PubMed]
  32. N. A. Mortensen, "Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers," Opt. Lett. 30, 1455-1457 (2005).
    [CrossRef] [PubMed]
  33. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).
  34. M. H. Frosz, T. Sorensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006).
    [CrossRef]
  35. G. Genty, "Supercontinuum generation in microstructured fibers and novel optical measurement techniques," Ph.D. Dissertation, Helsinki University of Technology, Espoo, Finland.
  36. J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-4026.
    [CrossRef] [PubMed]
  37. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  38. C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
    [CrossRef]
  39. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9391.
    [CrossRef] [PubMed]
  40. A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007).
    [CrossRef]

2009

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
[CrossRef]

2008

2007

L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
[CrossRef] [PubMed]

C. Xia, M. Kumar, M. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-865.
[CrossRef] [PubMed]

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007).
[CrossRef]

2006

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-4026.
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

M. H. Frosz, T. Sorensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, "Midinfrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping," Opt. Lett. 31, 2553-2555 (2006).
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9391.
[CrossRef] [PubMed]

2005

2004

2003

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003).
[CrossRef]

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
[CrossRef] [PubMed]

2002

2001

1997

1989

1986

Aggarwal, I. D.

Agrawal, G. P.

Bang, O.

Biancalana, F.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Birks, T. A.

Bjarklev, A.

Brambilla, G.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Broderick, N. G.

Broeng, J.

Cao, Q.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Carruthers, T. F.

Chau, A. H. L.

Chen, M.-K.

Cheng, M.

Coen, S.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Domachuk, P.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Dudley, J.M.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Ebendorff-Heidepriem, H.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Efimov, A.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Feng, X.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glass for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005).
[CrossRef]

Finazzi, V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Flanagan, J. C.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Foster, M. A.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Freeman, M. J.

Friebele, E. J.

Frosz, M. H.

Gaeta, A. L.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Galvanauskas, A.

Genty, G.

George, A. K.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007).
[CrossRef]

Gordon, J. P.

Hagen, C. L.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Harvey, J. D.

Haus, H. A.

Hayes, J. R.

Hegde, R. S.

Hewak, D. W.

Hodelin, J.

Holzlöhner, R.

Horak, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

Hu, J.

Islam, M. N.

Joannopoulos, J. D.

Johnson, S. G.

Kaivola, M.

Kibler, B.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Kim, J.

Kim, J. H.

Knight, J. C.

Koshiba, M.

Kulkarni, O. P.

Kumar, M.

Kung, F. H.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

Lee, D.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Lee, J.

Lehtonen, M.

Lenz, G.

Leong, J. Y. Y.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Leonhardt, R.

Lin, Q.

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Mairaj, A. K.

Marks, B. S.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
[CrossRef]

Mazé, G.

Menyuk, C. R.

Monro, T. M.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, "Nonsilica glass for holey fibers," J. Lightwave Technol. 23, 2046-2054 (2005).
[CrossRef]

Mortensen, N. A.

Nguyen, V. Q.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
[CrossRef] [PubMed]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

Omenetto, F. G.

Petropoulos, P.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Poletti, F.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

Poulain, M.

Price, J. H.

Price, J. H. V.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

Pureza, P.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

Pureza, P. C.

Reeves, W. H.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Richardson, D. J.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

Russell, P. S. J.

Russell, P. St. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Saitoh, K.

Sanders, S. T.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Sanghera, J.

Sanghera, J. S.

P. A. Thielen, L. B. Shaw, P. C. Pureza, V. Q. Nguyen, J. S. Sanghera, and I. D. Aggarwal, "Small-core As-Se fiber for Raman amplification," Opt. Lett. 28, 1406-1408 (2003).
[CrossRef] [PubMed]

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

Shaw, L. B.

Sinkin, O. V.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007).
[CrossRef]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Slusher, R. E.

Sorensen, T.

Stolen, R. H.

Taunay, T. F.

Taylor, A. J.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Terry, F. L.

Thielen, P. A.

Tomlinson, W. J.

Trebino, R.

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

Tse, M. L. V.

Wadsworth, W. J.

Walewski, J. W.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

Wang, A.

Winful, H. G.

Wolchover, N. A.

Wright, B. M.

Xia, C.

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
[CrossRef]

Yang, C.-E.

Yin, L.

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
[CrossRef]

Zweck, J.

Appl. Phys. B

M. A. Foster, J.M. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. L. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: Experiment and simulation," Appl. Phys. B 81, 363-367 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, "Mid-IR supercontinuum generation from nonsilica microstructured optical fibers," IEEE J. Sel. Top. Quantum Electron. 13, 738-749 (2007).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, A. Zakel, J. Mauricio, "10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation," IEEE J. Sel. Top. Quantum Electron. 15, 422-4342009.
[CrossRef]

IEEE Photon. Technol. Lett.

C. L. Hagen, J. W. Walewski, and S. T. Sanders, "Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source," IEEE Photon. Technol. Lett. 18, 91-93 (2006).
[CrossRef]

IEICE Trans. Electron.

M. Koshiba, "Full-vector analysis of photonic crystal fibers using the finite element method," IEICE Trans. Electron. 85-C, 881-888 (2002).

J. Am. Ceram. Soc.

V. Q. Nguyen, J. S. Sanghera, P. Pureza, F. H. Kung, and I. D. Aggarwal, "Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities," J. Am. Ceram. Soc. 85, 2849-2851 (2002).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, "Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibers," Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Nature Photonics

A. V. Gorbach and D. V. Skryabin, "Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres," Nature Photonics 1, 653-657 (2007).
[CrossRef]

Opt. Express

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9391.
[CrossRef] [PubMed]

C. Xia, M. Kumar, M. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé "Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power," Opt. Express 15, 865-871 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-865.
[CrossRef] [PubMed]

J. H. Kim, M.-K. Chen, C.-E. Yang, J. Lee, S. (S.) Yin, P. Ruffin, E. Edwards, C. Brantley, and C. Luo, "Broadband IR supercontinuum generation using single crystal sapphire fibers," Opt. Express 16, 4085-4093 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4085.
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, "Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs," Opt. Express 16, 7161-7168 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-10-7161.
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-20-1083.
[PubMed]

J. Hu, B. S. Marks, C. R. Menyuk, J. Kim, T. F. Carruthers, B. M. Wright, T. F. Taunay, and E. J. Friebele, "Pulse compression using a tapered microstructure optical fiber," Opt. Express 14, 4026-4036 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-4026.
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
[CrossRef] [PubMed]

Opt. Lett.

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science

D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, "Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Raman response function and supercontinuum generation in chalcogenide fiber," in Proc. Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, paper CMDD2, (2008).

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, "Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency shift," in Proc. Conference on Optical Fiber Communications (OFC), San Diego, CA, paper OWU6, (2009).

L. B. Shaw, V. Q. Nguyen, J. S. Sanghera, I. D. Aggarwal, P. A. Thielen, and F. H. Kung, "IR supercontinuum generation in As-Se photonic crystal fiber," in Proc. Advanced Solid State Photonics, Vienna, Austria, paper TuC5 (2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, New York, 2001).

G. Genty, "Supercontinuum generation in microstructured fibers and novel optical measurement techniques," Ph.D. Dissertation, Helsinki University of Technology, Espoo, Finland.

H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, John Wiley & Sons, Inc., New York, 1999.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Supplementary Material (1)

» Media 1: MOV (2553 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Photonic crystal fiber geometry.

Fig. 2.
Fig. 2.

(a) The imaginary part of third-order susceptibility, which is proportional to the Raman gain. It has been normalized to unity at the peak gain. (b) The real part of the third-order susceptibility is shown in the same arbitrary units. The red dashed curve and the blue solid curve show respectively N (Ω) for a silica fiber [13] and an As2Se3 chalcogenide fiber, whose Raman gain was measured at the Naval Research Laboratory.

Fig. 3.
Fig. 3.

Raman response function. In these figures, the blue solid curve and the red dashed curve represent chalcogenide fiber and silica fiber, respectively.

Fig. 4.
Fig. 4.

The dashed curve and solid curve represent material dispersion for chalcogenide glass and total dispersion for a chalcogenide PCF with one air-hole ring, respectively.

Fig. 5.
Fig. 5.

The blue solid curve and the red dashed curve show the simulation result and corresponding experimental result [9]. The dispersion is calculated with d/Λ = 0.8.

Fig. 6.
Fig. 6.

The effective index of the fundamental space-filling mode n FSM as a function of the ratio of wavelength to pitch, λ/Λ, with different ratios of hole diameter to pitch, d/Λ.

Fig. 7.
Fig. 7.

The curves corresponding to V eff = 2.405 for different refractive indices of glass. The red, blue, and green solid solid curves represent refractive indices of 1.45, 2.4, and 2.8, respectively.

Fig. 8.
Fig. 8.

The phase-matching diagram is calculated for an As2Se3 chalcogenide PCF. The blue solid, dashed, and dotted curves present the phase-matching conditions for peak powers of 1, 0.1, and 0 kW, respectively, with d/Λ = 0.4 and Λ = 3 μm.

Fig. 9.
Fig. 9.

The phase-matching diagram is calculated for an As2Se3 chalcogenide PCF for a peak power of 0.1 kW with different pitches. The green dotted, blue dashed, and red solid curves present the phase-matching conditions for pitches of 2, 3, and 4 μm, respectively.

Fig. 10.
Fig. 10.

The blue solid, green solid, and red dashed curves show respectively the material loss, leakage loss, and total loss for a PCF with d/Λ = 0.4 and Λ = 3 μm.

Fig. 11.
Fig. 11.

The green dashed, blue solid, and red dotted curves show the output spectra with pitches of 2, 3, and 4 μm, respectively. The input pulse has a FWHM of 500 fs. The input peak power is set at 1 kW.

Fig. 12.
Fig. 12.

(Media 1) Movie of a simulation of the spectrogram as the wave propagates along the PCF. The black solid curve shows the group delay with respect to the wave at 2.5 μm.

Fig. 13.
Fig. 13.

The blue dashed, blue dash-dotted, and blue dotted curves present the chromatic dispersion for a PCF with Λ = 2 μm, Λ = 3 μm, and Λ = 4 μm, respectively.

Fig. 14.
Fig. 14.

The total generated bandwidth as a function of Λ. The input source has a peak power of 1 kW and FWHM of 500 fs.

Fig. 15.
Fig. 15.

The total generated bandwidth as a function of the FWHM of the input pulse. The PCF has a pitch of 3 μm. The input source has a peak power of 1 kW.

Fig. 16.
Fig. 16.

Spectrograms with (a) an input FWHM of 600 fs and (b) an input FWHM of 650 fs using the same color scale.

Fig. 17.
Fig. 17.

The total generated bandwidth as a function of input peak power. The PCF has a pitch of 3 μm. The input source has a FWHM of 500 fs.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( z , t ) z + a 2 A i IFT { [ β ( ω 0 + Ω ) β ( ω 0 ) Ω β 1 ( ω 0 ) ] A ˜ ( z , ω ) }
= ( 1 + i ω 0 t ) [ A ( z , t ) t R ( t t ) A ( z , t ) 2 dt ] ,
V = 2 π λ a ( n co 2 n cl 2 ) 1 / 2 ,
V eff = 2 π λ a eff ( n co 2 n FSM 2 ) 1 / 2 ,
V eff 2 2 n co π 3 λ / Λ ( n co n FSM ) 1 / 2 .
A ( z , t ) z = ( ω p ) [ A ( z , t ) t R ( t t ) A ( z , t ) 2 dt ] .
A ( z , t ) z = ( ω p ) ( 1 f R ) A ( z , t ) A ( z , t ) 2 .
d A s dz = 2 ( ω p ) ( 1 f R ) [ 2 P p A s + P p exp ( iθz ) A a * ] ,
d A a * dz = 2 ( ω p ) ( 1 f R ) [ 2 P p A a * + P p exp ( + iθz ) A s ] ,
d B s dz = 2 ( ω p ) ( 1 f R ) P p exp ( iκz ) B a * ,
dB a * dz = 2 ( ω p ) ( 1 f R ) P p exp ( + iκz ) B s ,
κ = ( n s ω s + n a ω a 2 n p ω p ) / c + 2 ( 1 f R ) γ ( ω p ) P p = 0 .

Metrics