Abstract

Polarization gratings can be realized by polarization holographic recording in photoanisotropic materials. In this paper, we study two types of polarization gratings. One is recorded with two orthogonally circularly (OC) polarized beams and the other one with two orthogonally linearly (OL) polarized beams. The interference of both cases is explored beyond the small recording angle regime. A novel method is proposed to represent the polarization states of the modulation. The diffraction by polarization gratings is studied with rigorous diffraction theory. Simulations based on the Finite Element Method are performed for both OC and OL polarization gratings at small and large recording angles.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000).
    [CrossRef]
  2. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996).
    [CrossRef] [PubMed]
  3. I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
    [CrossRef]
  4. S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
    [CrossRef]
  5. M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
    [CrossRef]
  6. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
    [CrossRef]
  7. M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006).
    [CrossRef]
  8. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
    [CrossRef]
  9. H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
    [CrossRef]
  10. N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
    [CrossRef]
  11. S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
    [CrossRef]
  12. J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
    [CrossRef]
  13. A. S. Matharu, S. Jeeva, and P. Ramanujam, "Liquid crystals for holographic optical data storage," Chem. Soc. Rev. 36, 1868-1880 (2007).
    [CrossRef] [PubMed]
  14. S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, "Side-chain liquid-crystalline polyesters for optical information storage," Opt. Lett. 17, 1234-1236 (1992).
    [CrossRef] [PubMed]
  15. E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
    [CrossRef]
  16. L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage," Appl. Opt. 42, 5918-5927 (2003).
    [CrossRef] [PubMed]
  17. S. D. Kakichashvili, "Regularity in photoanisotropic phenomena," Opt. Spektrosk 52, 317-322 (1982).
  18. S. D. Kakichashvili, "Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium," Kvantovaya Elektron. (Moscow) 10, 1976-1981 (1983).
  19. T. Todorov, L. Nikolova, and N. Tomova, "Polarization holography. 1: A new high-efficiency organic material with reversible photoinduced birefringence," Appl. Opt. 23, 4309 (1984).
    [CrossRef] [PubMed]
  20. T. Todorov, L. Nikolova, and N. Tomova, "Polarization holography. 2: Polarization holographic gratings in photoanisotropic materials with and without intrinsic birefringence," Appl. Opt. 23, 4588 (1984).
    [CrossRef] [PubMed]
  21. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, "Polarization holography. 3: Some applications of polarization holographic recording," Appl. Opt. 24, 785 (1985).
    [CrossRef] [PubMed]
  22. L. Nikolova and T. Todorov, "Diffraction Efficiency and Selectivity of Polarization Holographic Recording," J. Mod. Opt. 31, 579-588 (1984).
  23. L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
    [CrossRef]
  24. T. Huang and K. H. Wagner, "Holographic diffraction in photoanisotropic organic materials," J. Opt. Soc. Am. A 10, 306 (1993).
    [CrossRef]
  25. T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995).
    [CrossRef]
  26. C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006).
    [CrossRef]
  27. C. M. van Heesch, "Polarization-Selective Diffraction for Display applications," Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2007).
  28. B. Kilosanidze and G. Kakauridze, "Polarization-holographic gratings for analysis of light. 1. Analysis of completely polarized light," Appl. Opt. 46, 1040-1049 (2007).
    [CrossRef] [PubMed]
  29. M. Xu, "Diffractive Optics of Anisotropic Polarization Gratings," Ph.D. thesis, Delft University of Technology, Delft (2009).
  30. M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983).
    [CrossRef]
  31. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  32. X. Wei, "Three Dimensional Rigorous Model for Optical Scattering Problems," Ph.D. thesis, Delft University of Technology, Delft (2006).
  33. X. Wei, A. J. Wachters, and H. P. Urbach, "Finite-element model for three-dimensional optical scattering problems," J. Opt. Soc. Am. A 24, 866-881 (2007).
    [CrossRef]
  34. "ILUPACK V2.1," URL http://www.math.tu-berlin.de/ilupack/.
  35. O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004).
    [CrossRef]
  36. O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

2007

2006

C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006).
[CrossRef]

O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

2004

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004).
[CrossRef]

2003

L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage," Appl. Opt. 42, 5918-5927 (2003).
[CrossRef] [PubMed]

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

2002

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

2000

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000).
[CrossRef]

1999

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

1998

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

1997

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
[CrossRef]

1996

1995

T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995).
[CrossRef]

1993

1992

1985

1984

1983

M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983).
[CrossRef]

S. D. Kakichashvili, "Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium," Kvantovaya Elektron. (Moscow) 10, 1976-1981 (1983).

1982

S. D. Kakichashvili, "Regularity in photoanisotropic phenomena," Opt. Spektrosk 52, 317-322 (1982).

Andruzzi, F.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, "Side-chain liquid-crystalline polyesters for optical information storage," Opt. Lett. 17, 1234-1236 (1992).
[CrossRef] [PubMed]

Attia, M.

M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Berneth, H.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

Bieringer, T.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Crawford, G. P.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Delaire, J. A.

J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000).
[CrossRef]

Eakin, J. N.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Eickmans, J.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

Erdei, G.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Escuti, M. J.

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006).
[CrossRef]

C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006).
[CrossRef]

Feringa, B. L.

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

Gärtner, K.

O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004).
[CrossRef]

Geertsema, E. M.

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

Haarer, D.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Huang, T.

T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995).
[CrossRef]

T. Huang and K. H. Wagner, "Holographic diffraction in photoanisotropic organic materials," J. Opt. Soc. Am. A 10, 306 (1993).
[CrossRef]

Hvilsted, S.

Ivanov, M.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996).
[CrossRef] [PubMed]

Jeeva, S.

A. S. Matharu, S. Jeeva, and P. Ramanujam, "Liquid crystals for holographic optical data storage," Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

Jonathan, J. M. C.

M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Jones, W. M.

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006).
[CrossRef]

Kakauridze, G.

Kakichashvili, S. D.

S. D. Kakichashvili, "Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium," Kvantovaya Elektron. (Moscow) 10, 1976-1981 (1983).

S. D. Kakichashvili, "Regularity in photoanisotropic phenomena," Opt. Spektrosk 52, 317-322 (1982).

Kerekes, A.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Kerekes, Á.

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Kilosanidze, B.

Koppa, P.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Kostromine, S.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

Kostromine, S. G.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Koumura, N.

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

Loerincz, E.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Lörincz, E.

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Matharu, A. S.

Meetsma, A.

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

Nakatani, K.

J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000).
[CrossRef]

Naydenova, I.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

Nedelchev, L. L.

Nikolova, L.

Oh, C.

C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006).
[CrossRef]

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Park, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Pelcovits, R. A.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Radcliffe, M. D.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Ramanujam, P.

A. S. Matharu, S. Jeeva, and P. Ramanujam, "Liquid crystals for holographic optical data storage," Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Ramanujam, P. S.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

L. L. Nedelchev, A. S. Matharu, S. Hvilsted, and P. S. Ramanujam, "Photoinduced Anisotropy in a Family of Amorphous Azobenzene Polyesters for Optical Storage," Appl. Opt. 42, 5918-5927 (2003).
[CrossRef] [PubMed]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
[CrossRef]

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy," Appl. Opt. 35, 3835-3840 (1996).
[CrossRef] [PubMed]

S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, "Side-chain liquid-crystalline polyesters for optical information storage," Opt. Lett. 17, 1234-1236 (1992).
[CrossRef] [PubMed]

Sajti, S.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Sarkissian, H.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Schadt, M.

M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
[CrossRef]

Schenk, O.

O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004).
[CrossRef]

Schuster, A.

M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
[CrossRef]

Seiberle, H.

M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
[CrossRef]

Stein, R. S.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Stoyanova, K.

Sueto, A.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Szarvas, G.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Tabirian, N.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Thoma, R.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

Todorov, T.

Tomova, N.

Ujhelyi, F.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Ujvari, T.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Urbach, H. P.

van Egmond, J. W.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Varhegyi, P.

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

Wachters, A. J.

Wagner, K. H.

T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995).
[CrossRef]

T. Huang and K. H. Wagner, "Holographic diffraction in photoanisotropic organic materials," J. Opt. Soc. Am. A 10, 306 (1993).
[CrossRef]

Wei, X.

Xie, Y.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

Zeldovich, B.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Zilker, S. J.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Adv. Mater.

S. J. Zilker, T. Bieringer, D. Haarer, R. S. Stein, J. W. van Egmond, and S. G. Kostromine, "Holographic Data Storage in Amorphous Polymers," Adv. Mater. 10, 855 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Sajti, Á. Kerekes, P. Ramanujam, and E. Lörincz, "Response function for the characterization of photo-induced anisotropy in azobenzene containing polymers," Appl. Phys. B 75, 677-685 (2002).
[CrossRef]

Appl. Phys. Lett.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, "Zero voltage Freedericksz transition in periodically aligned liquid crystals," Appl. Phys. Lett. 85, 1671 (2004).
[CrossRef]

C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006).
[CrossRef]

Chem. Rev.

J. A. Delaire and K. Nakatani, "Linear and Nonlinear Optical Properties of Photochromic Molecules and Materials," Chem. Rev. 100, 1817-1846 (2000).
[CrossRef]

Chem. Soc. Rev.

A. S. Matharu, S. Jeeva, and P. Ramanujam, "Liquid crystals for holographic optical data storage," Chem. Soc. Rev. 36, 1868-1880 (2007).
[CrossRef] [PubMed]

Elec. Trans. Numer. Anal.

O. Schenk and K. Gärtner, "On fast factorization pivoting methods for symmetric indefinite systems," Elec. Trans. Numer. Anal. 23, 158-179 (2006).

IEEE J. Quantum Electron.

T. Huang and K. H. Wagner, "Coupled Mode Analysis of Polarization Volume Hologram," IEEE J. Quantum Electron. 31, 372 (1995).
[CrossRef]

J. Am. Chem. Soc.

N. Koumura, E. M. Geertsema, A. Meetsma, and B. L. Feringa, "Light-Driven Molecular Rotor: Unidirectional Rotation Controlled by a Single Stereogenic Cente," J. Am. Chem. Soc. 122, 12,005-12,006 (2000).
[CrossRef]

J. Mod. Opt.

I. Naydenova, L. Nikolova, T. Todorov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Polarimetric investigation of materials with both linear and circular anisotropy," J. Mod. Opt. 44, 1643-1650 (1997).
[CrossRef]

L. Nikolova and T. Todorov, "Diffraction Efficiency and Selectivity of Polarization Holographic Recording," J. Mod. Opt. 31, 579-588 (1984).

J. Opt. Soc. Am. A

Journal of Future Generation Computer Systems

O. Schenk and K. Gärtner, "Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO," Journal of Future Generation Computer Systems 20, 475-487 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

J. Eickmans, T. Bieringer, S. Kostromine, H. Berneth, and R. Thoma, "Photo addressable Polymers: A New Class of Materials for Optical Data Storage and Holographic Memories," Jpn. J. Appl. Phys. 38, 1835-1836 (1999).
[CrossRef]

Kvantovaya Elektron. (Moscow)

S. D. Kakichashvili, "Polarization-holographic recording in the general case of a reaction of a photoanisotropic medium," Kvantovaya Elektron. (Moscow) 10, 1976-1981 (1983).

Mol. Cryst. Liq. Cryst.

H. Sarkissian, B. Park, N. Tabirian, and B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential Application for Projection Displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006).
[CrossRef]

Nature

M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multi-domain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
[CrossRef]

Opt. Commun.

M. Attia and J. M. C. Jonathan, "Anisotropic Gratings Recorded from Two Circular Polarized Coherent Waves," Opt. Commun. 47, 85-90 (1983).
[CrossRef]

Opt. Express

C. Oh and M. J. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation," Opt. Express 14, 11,870-11,884 (2006).
[CrossRef]

Opt. Lett.

Opt. Mater.

L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted, and P. S. Ramanujam, "Photoinduced circular anisotropy in side-chain azobenzene polyesters," Opt. Mater. 8, 255-258 (1997).
[CrossRef]

Opt. Spektrosk

S. D. Kakichashvili, "Regularity in photoanisotropic phenomena," Opt. Spektrosk 52, 317-322 (1982).

Proc. SPIE

E. Loerincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Sueto, P. Varhegyi, S. Sajti, A. Kerekes, T. Ujvari, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyster as storage material," Proc. SPIE 4991, 34 (2003).
[CrossRef]

SID Symp. Dig.

M. J. Escuti and W. M. Jones, "Polarization-Independent Switching With High Contrast from a Liquid Crystal Polarization Grating," SID Symp. Dig. 37, 1443-1446 (2006).
[CrossRef]

Other

C. M. van Heesch, "Polarization-Selective Diffraction for Display applications," Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2007).

M. Xu, "Diffractive Optics of Anisotropic Polarization Gratings," Ph.D. thesis, Delft University of Technology, Delft (2009).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).

X. Wei, "Three Dimensional Rigorous Model for Optical Scattering Problems," Ph.D. thesis, Delft University of Technology, Delft (2006).

"ILUPACK V2.1," URL http://www.math.tu-berlin.de/ilupack/.

Supplementary Material (1)

» Media 1: MOV (2315 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

Arrangement of the interference between two plane waves, with wave vector and complex fields k +, E + and k -, E - respectively.

Fig. 2.
Fig. 2.

(a) (c) (e) Polarization ellipses of the interference of two orthogonally circularly polarized plane waves with recording angle 2.5°, 10° and 15° respectively; (b) (d) (f) The ellipticity and total intensity modulation over one period of the pattern in (a), (c) and (e) respectively.

Fig. 3.
Fig. 3.

(a) (c) (e) Polarization ellipses of the interference of two orthogonally linearly polarized plane waves with recording angle 2.5°, 10° and 15° respectively; (b) (d) (f) The ellipticity and total intensity modulation over one period of the pattern in (a), (c) and (e) respectively.

Fig. 4.
Fig. 4.

Single-frame excerpt from Media 1 polarization representation of interference pattern of two elliptically polarized waves (Media 1).

Fig. 5.
Fig. 5.

Transmitted diffraction efficiencies as function of the grating thickness of an OC polarization grating recorded at θrecord. = 2.5°. The reading beam has wavelength 633 nm and is p-polarized. ‘-1T’ in the legend represents the - 1 st order in the transmitted field. Analogous conventions apply to 0T and 1T.

Fig. 6.
Fig. 6.

The coordinate system and the definition of angles.

Fig. 7.
Fig. 7.

Diffraction efficiency for OC polarization grating recorded at 2.5° as function of the incident angle. The reading beam is 633 nm, with (a) and (b) incident angles ϕi = 0° and (c) and (d) ϕi = 90°. For both incidence mounts, θi varies from 0° to 85°. For (a) and (c), the incident wave is p-polarized and for (b) and (d), it is s-polarized.

Fig. 8.
Fig. 8.

Transmitted diffraction efficiencies as function of the grating thickness of an OC polarization grating with pitch of 4023 nm with local linear birefringence of 0.1. The reading beam has wavelength 633 nm and is p-polarized.

Fig. 9.
Fig. 9.

Angular dependence diffraction efficiency for OC polarization grating with pitch of 4023 nm and with local linear birefringence of 0.1. The reading beam is 633 nm, with (a) and (b) incident angles ϕi = 0° and (c) and (d) ϕi = 90°. For both incidence mounts, θi varies from 0° to 85°. For (a) and (c), the incident wave is p-polarized and for (b) and (d), it is s-polarized.

Fig. 10.
Fig. 10.

Angular dependence diffraction efficiency for OC polarization grating with pitch of 4023 nm and with local linear birefringence of 0.05. The reading beam is 633 nm and p-polarized, and is incident at (a) ϕi = 0° and (b) ϕi = 90°.

Fig. 11.
Fig. 11.

Comparison of the transmitted diffraction efficiency for a OC polarization gratings recorded at angles θrecord. = 2.5° (blue), 10° (green) and 15° (red). In (a) the diffraction efficiencies of the 0 th orders of the transmitted field, and in (b) shows the efficiencies of the transmitted 1 st orders are shown.

Fig. 12.
Fig. 12.

Wavelength dependence of the diffraction efficiency of an OC polarization grating recorded at 10°. In the figure, blue, green, and red lines indicate 450 nm, 532 nm and 633 nm respectively. The incident wave is p-polarized and at perpendicular incidence, i.e. with θi = 0°, ϕi = 0°. Panel (a) shows relative intensity for the 0 th order in transmission and (b) for the 1 st transmitted orders.

Fig. 13.
Fig. 13.

Diffraction efficiency of an OL polarization grating recorded at θrecord. = 2.5° as function of the thickness of the grating. The reading beam has wavelength of 633 nm and is an s-polarized perpendicular incident plane wave. ‘-1T’ in the legend represents the - 1 st order in the transmitted field. Analogous conventions apply to 0T and 1T.

Fig. 14.
Fig. 14.

Diffraction efficiency of an OL polarization grating recorded at 2.5° as function of the incident angle. The reading beam is 633 nm, with (a) and (b) incident angles ϕi = 0° and (c) and (d) ϕi = 90°. For both incidence mounts, θi varies from 0° to 85°. For (a) and (c), the incident wave is p-polarized and for (b) and (d), it is s-polarized. -1T in the legend represents the - 1 st order in the transmitted field. Analogous conventions apply to 0T and 1T. R represents the reflected field.

Fig. 15.
Fig. 15.

Comparison of diffraction efficiency of OL polarization gratings recorded at angles θrecord. = 2.5° (blue), 10° (green) and 15° (red). Subfigure (a) shows the diffraction efficiency of the 0 th transmitted order, and subfigure (b) shows the efficiency of the transmitted 1 st orders.

Fig. 16.
Fig. 16.

OL polarization grating with κc = 0. Panel (a) displays the relative intensity for 0 th order and total intensity in transmission; (b) displays higher diffracted orders in transmission.

Fig. 17.
Fig. 17.

OL polarization grating with κc = 0.05. Panel (a) displays the relative intensity for the 0 th order and total intensity in transmission; (b) displays higher diffracted orders in transmission.

Tables (1)

Tables Icon

Table 1. A few specific recording angles and the corresponding obtained pitches.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

k + = ( k x , 0 , k z ) ,
k = ( k x , 0 , k z ) ,
E + ( r ) = [ a S + ( 0 1 0 ) + a P + 1 k 0 n ( k z 0 k x ) ] e i k + · r ,
E ( r ) = [ a S ( 0 1 0 ) + a P 1 k 0 n ( k z 0 k x ) ] e i k · r ,
E ( r ) = E + ( r ) + E ( r )
= ( ( a P e i k x x + a P + e i k x x ) k z k 0 n a S e i k x x + a S + e i k x x ( a P e i k x x a P + e i k x x ) k x k 0 n ) e i k z z ,
𝓔 ( r , t ) = Re [ E ( r ) e i ω t ] ,
a S = a S + = a S , a P = i a S , a P + = i a S , }
E ( r ) = 2 a S ( sin ( k x x ) k z k 0 n cos ( k x x ) i cos ( k x x ) k x k 0 n ) e i k z z ,
𝓔 ( r , t ) = Re [ ( 2 a S sin ( k x x ) k z k 0 n 2 a S cos ( k x x ) i 2 a S cos ( k x x ) k x k 0 n ) e i ( k z z ω t ) ] = ( 2 k z k 0 n a S sin ( k x x ) cos ( k z z ω t ) 2 a S cos ( k x x ) cos ( k z z ω t ) 2 k x k 0 n a S cos ( k x x ) sin ( k z z ω t ) ) .
a S + = a , a P + = 0 ; a S = 0 , a P = a . }
E ( r ) = a ( k z k 0 n e i k x x e i k x x k x k 0 n e i k x x ) e i k z z .
E ( r ) = E + ( r ) + E ( r )
( ( a P e i k x x + a P + e i k x x ) k z k 0 n a S e i k x x + a S + e i k x x 0 ) e i k z z .
E ( x ) = E x ( x ) x ̂ + E y ( x ) y ̂ .
a S + = 1 , a P + = i ;
a S = 1.5 , a P = 2 i ,
ε ̃ = ( x ) = ( ε i + κ E 1 ( x ) 2 + κ E 2 ( x ) 2 i κ c 2 E 1 ( x ) E 2 ( x ) 0 i κ c 2 E 1 ( x ) E 2 ( x ) ε i + κ E 1 ( x ) 2 + κ E 2 ( x ) 2 0 0 0 ε i + κ [ E 1 ( x ) 2 + E 2 ( x ) 2 ] ) ,
U ( x ) = ( e ̂ 1 ( x ) , e ̂ 2 ( x ) , e ̂ 3 ( x ) ) ,
ε = ( x ) = U ( x ) * ε ̃ = ( x ) U ( x ) .
θ B = arctan n 2 n 1 ,

Metrics