Abstract

We report a novel system for the accurate measurement of all polarization related parameters, including polarization mode dispersion and polarization dependent loss, using binary magneto-optic polarization rotators. By taking advantage of the binary nature of the rotators, we achieved unprecedented DGD, SOPMD, and PDL accuracies of 2.6 fs, 1.39ps2, and 0.06 dB respectively; repeatabilities of 0.022 fs, 0.28 ps2, and 0.034dB respectively; and resolutions of 1 fs, 0.005 ps2 and 0.01dB respectively, from 1480 to 1620 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao, “Controlling polarization related impairments,” Lightwave Magazine, October 31, 2000.
  2. H. Kogelnik, R. Jopson, and L. Nelson, “Polarization-Mode Dispersion,” in Optical Fiber telecommunications, Vol. IV-B, Systems and Impairments, I. P. Kaminow and L. Tingye eds., (Elsevier Science (USA)
  3. E. Lichtman, “Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems,” J. Lightwave Technol. 13(5), 906–913 (1995).
    [CrossRef]
  4. X. S. Yao, L.-S. Yan, B. Zhang, A. E. Willner, and J. Jiang, “All-optic scheme for automatic polarization division demultiplexing,” Opt. Express 15(12), 7407–7414 (2007).
    [CrossRef] [PubMed]
  5. E. Ip, A. P. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  6. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express 16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  7. R. A. Chipman, and Ch. Polarimetry, 22 in Handbook of Optics, vol. II, 2nd ed., M. Bass ed., McGraw-Hill, New York, 1995.
  8. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
    [CrossRef] [PubMed]
  9. P. A. Williams, “Rotating-wave-plate stokes polarimeter for differential group delay measurements of polarization-mode dispersion,” Appl. Opt. 38(31), 6508–6515 (1999).
    [CrossRef]
  10. E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).
  11. P. A. Williams, A. H. Rose, and C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36(25), 6466–6472 (1997).
    [CrossRef]
  12. A. De Martino, Y. K. Kim, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28(8), 616–618 (2003).
    [CrossRef] [PubMed]
  13. B. Wang, J. List, and R. Rockwell, “Stokes polarimeter using two photoelastic modulators,” in Polarization Measurement, Analysis, and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1–8 (2002).
  14. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985).
    [CrossRef] [PubMed]
  15. R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightwave Technol. 16(7), 1285–1294 (1998).
    [CrossRef]
  16. A. Zadok, N. Simon, and A. Eyal, “The dependence of the output stokes parameters on the state of an arbitrarily located polarization controller in PMD mitigation schemes,” J. Lightwave Technol. 22(6), 1533–1538 (2004).
    [CrossRef]
  17. M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
    [CrossRef]
  18. W. Xiang, and A. M. Weiner, Digest of the LEOS Summer Topical Meetings, “Fast multi-wavelength polarimeter for polarization mode dispersion compensation systems,” WB2.4/67–173.
  19. X. S. Yao, L. Yan, and Y. Shi, “Highly repeatable all-solid-state polarization-state generator,” Opt. Lett. 30(11), 1324–1326 (2005).
    [CrossRef] [PubMed]
  20. X. S. Yao, X. Chen, and L. Yan, “Self-calibrating binary polarization analyzer,” Opt. Lett. 31(13), 1948–1950 (2006).
    [CrossRef] [PubMed]
  21. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
    [CrossRef]
  22. B. L. Heffner, “Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices,” IEEE Photon. Technol. Lett. 4(5), 451–454 (1992).
    [CrossRef]
  23. R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” J. Lightwave Technol. 16(7), 1285–1294 (1998).
    [CrossRef]
  24. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express 14(12), 5067–5072 (2006).
    [CrossRef] [PubMed]
  25. P. A Williams, S. M. Etzel, J. D. Kofler and C. M Wang, “Standard Reference Material 2538 for Polarization-mode dispersion (Non-mode coupled),” NIST special publication 260–145.
  26. S. M. Etzel, A. H. Rose, and C. M. Wang, “Dispersion of the temperature dependence of the retardance in SiO(2) and MgF(2),” Appl. Opt. 39(31), 5796–5800 (2000).
    [CrossRef]
  27. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [CrossRef] [PubMed]
  28. X. Y. Kalisky, in The Physics and Engineering of Solid State Lasers, (SPIE Press, Bellingham, Washington, 2005), p.168 .
  29. M. Born, and E. Wolf, in Principles of Optics, 7th ed. (University Press, Cambridge, UK, 1999) pp 38-54.
  30. BK7 Glass data sheet, http://www.us.schott.com/advanced_optics/us/abbe_datasheets/datasheet_n-bk7.pdf?highlighted_text=BK7
  31. Y. Shi, L. Yan, and X. S. Yao, “Automatic maximum-minimum search method for accurate PDL and DOP characterization,” J. Lightwave Technol. 24(11), 4006–4012 (2006).
    [CrossRef]
  32. E. Collett, Chapter 9 in Polarized Light in Fiber Optics (The PolaWave Group Lincroft, New Jersey, USA, 2003).
  33. N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
    [CrossRef]
  34. Data sheet of Agilent N7788B/N7788BD optical component analyzer http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT_EDITORIAL&ckey=1203309 .
  35. Date sheet of Thorlabs PMD/PDL Analysis System PMD5000, http://www.thorlabs.us/NewGroupPage9.cfm?ObjectGroup_ID=1592 .
  36. B. L. Heffner, “Attosecond-resolution measurement of polarization mode dispersion in short sections of optical fiber,” Opt. Lett. 18(24), 2102–2104 (1993).
    [CrossRef] [PubMed]
  37. D. Derickson, in Fiber Optic Test and Measurement (Prentice-Hall, Upper Saddle River, New Jersey, 1998) Chap 6. .
  38. R. M. Craig, “Interlaboratory comparison of polarizationcrosstalk measurement methods in terminated high birefringence optical fiber,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 180–181.
  39. D. Penninckx and N. Beck, “Definition, meaning, and measurement of the polarization extinction ratio of fiber-based devices,” Appl. Opt. 44(36), 7773–7779 (2005).
    [CrossRef] [PubMed]
  40. S. C. Rashleigh, “Measurement of fiber birefringence by wavelength scanning: effect of dispersion,” Opt. Lett. 8(6), 336–338 (1983).
    [CrossRef] [PubMed]
  41. T. Ritari, H. Ludvigsen, M. Wegmuller, M. Legré, N. Gisin, J. Folkenberg, and M. Nielsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12(24), 5931–5939 (2004).
    [CrossRef] [PubMed]
  42. Corning panda PM specialty fibers, PI936, http://www.corning.com/WorkArea/downloadasset.aspx?id=18341

2008 (2)

2007 (1)

2006 (3)

2005 (2)

2004 (3)

2003 (1)

2000 (2)

S. M. Etzel, A. H. Rose, and C. M. Wang, “Dispersion of the temperature dependence of the retardance in SiO(2) and MgF(2),” Appl. Opt. 39(31), 5796–5800 (2000).
[CrossRef]

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (2)

1997 (1)

1995 (1)

E. Lichtman, “Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems,” J. Lightwave Technol. 13(5), 906–913 (1995).
[CrossRef]

1993 (1)

1992 (3)

D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992).
[CrossRef] [PubMed]

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

B. L. Heffner, “Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices,” IEEE Photon. Technol. Lett. 4(5), 451–454 (1992).
[CrossRef]

1991 (1)

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).

1990 (1)

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[CrossRef]

1985 (1)

1983 (1)

Azzam, R. M. A.

Barros, D. J.

Beck, N.

Chen, X.

Craig, R. M.

De Martino, A.

Dijkstra, E.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).

Dong, H.

Drévillon, B.

Etzel, S. M.

Eyal, A.

Folkenberg, J.

Garcia-Caurel, E.

Gilbert, S. L.

Gisin, N.

Goldstein, D. H.

Gong, Y. D.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Hale, P. D.

Heffner, B. L.

B. L. Heffner, “Attosecond-resolution measurement of polarization mode dispersion in short sections of optical fiber,” Opt. Lett. 18(24), 2102–2104 (1993).
[CrossRef] [PubMed]

B. L. Heffner, “Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices,” IEEE Photon. Technol. Lett. 4(5), 451–454 (1992).
[CrossRef]

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

Ip, E.

Jiang, J.

Kahn, J. M.

Karlsson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
[CrossRef]

Kim, Y. K.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Kremers, M.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).

Lau, A. P.

Laude, B.

Legré, M.

Lichtman, E.

E. Lichtman, “Limitations imposed by polarization-dependent gain and loss on all-optical ultralong communication systems,” J. Lightwave Technol. 13(5), 906–913 (1995).
[CrossRef]

Ludvigsen, H.

Meekes, H.

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).

Nielsen, M.

Ning, G. X.

Olsson, B. E.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
[CrossRef]

Penninckx, D.

Petersson, M.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
[CrossRef]

Rashleigh, S. C.

Ritari, T.

Roberts, K.

Rose, A. H.

Shi, Y.

Shum, P.

Simon, N.

Sun, H.

Sunnerud, H.

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
[CrossRef]

Walker, G. R.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[CrossRef]

Walker, N. G.

N. G. Walker and G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8(3), 438–458 (1990).
[CrossRef]

Wang, C. M.

Wegmuller, M.

Williams, P. A.

Willner, A. E.

Wu, C. Q.

Wu, K. T.

Yan, L.

Yan, L.-S.

Yan, M.

Yao, X. S.

Zadok, A.

Zhang, B.

Zhou, J. Q.

Appl. Opt. (5)

IEEE Photon. Technol. Lett. (3)

M. Petersson, H. Sunnerud, M. Karlsson, and B. E. Olsson, “Performance monitoring in optical networks using stokes parameters,” IEEE Photon. Technol. Lett. 16(2), 686–688 (2004).
[CrossRef]

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992).
[CrossRef]

B. L. Heffner, “Deterministic, Analytically Complete Measurement of Polarization-Dependent Transmission Through Optical Devices,” IEEE Photon. Technol. Lett. 4(5), 451–454 (1992).
[CrossRef]

J. Lightwave Technol. (6)

J. Phys. (1)

E. Dijkstra, H. Meekes, and M. Kremers, “The high-accuracy universal polarimeter,” J. Phys. 24(10), 1861–1868 (1991).

Opt. Express (5)

Opt. Lett. (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[CrossRef] [PubMed]

Other (15)

X. Y. Kalisky, in The Physics and Engineering of Solid State Lasers, (SPIE Press, Bellingham, Washington, 2005), p.168 .

M. Born, and E. Wolf, in Principles of Optics, 7th ed. (University Press, Cambridge, UK, 1999) pp 38-54.

BK7 Glass data sheet, http://www.us.schott.com/advanced_optics/us/abbe_datasheets/datasheet_n-bk7.pdf?highlighted_text=BK7

E. Collett, Chapter 9 in Polarized Light in Fiber Optics (The PolaWave Group Lincroft, New Jersey, USA, 2003).

Data sheet of Agilent N7788B/N7788BD optical component analyzer http://www.home.agilent.com/agilent/redirector.jspx?action=ref&cname=AGILENT_EDITORIAL&ckey=1203309 .

Date sheet of Thorlabs PMD/PDL Analysis System PMD5000, http://www.thorlabs.us/NewGroupPage9.cfm?ObjectGroup_ID=1592 .

P. A Williams, S. M. Etzel, J. D. Kofler and C. M Wang, “Standard Reference Material 2538 for Polarization-mode dispersion (Non-mode coupled),” NIST special publication 260–145.

D. Derickson, in Fiber Optic Test and Measurement (Prentice-Hall, Upper Saddle River, New Jersey, 1998) Chap 6. .

R. M. Craig, “Interlaboratory comparison of polarizationcrosstalk measurement methods in terminated high birefringence optical fiber,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 180–181.

Corning panda PM specialty fibers, PI936, http://www.corning.com/WorkArea/downloadasset.aspx?id=18341

B. Wang, J. List, and R. Rockwell, “Stokes polarimeter using two photoelastic modulators,” in Polarization Measurement, Analysis, and Applications V, D. H. Goldstein and D. B. Chenault, eds., Proc. SPIE 4819, 1–8 (2002).

W. Xiang, and A. M. Weiner, Digest of the LEOS Summer Topical Meetings, “Fast multi-wavelength polarimeter for polarization mode dispersion compensation systems,” WB2.4/67–173.

R. A. Chipman, and Ch. Polarimetry, 22 in Handbook of Optics, vol. II, 2nd ed., M. Bass ed., McGraw-Hill, New York, 1995.

X. S. Yao, “Controlling polarization related impairments,” Lightwave Magazine, October 31, 2000.

H. Kogelnik, R. Jopson, and L. Nelson, “Polarization-Mode Dispersion,” in Optical Fiber telecommunications, Vol. IV-B, Systems and Impairments, I. P. Kaminow and L. Tingye eds., (Elsevier Science (USA)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The construction of a binary polarization measurement system comprised of a PSG and a PSA made with binary magneto-optic polarization rotators, a tunable laser, and a computer.

Fig. 2
Fig. 2

Schematic design of DGD, SOPMD, and PDL artifacts. (A) Precision wavelength independent DGD artifact. (B) Wavelength independent combined DGD and SOPMD artifact. The birefringence axes of two YVO4 crystals are oriented 45° from each other. (C) Wavelength independent PDL artifact. Fused silica, BK7 or other types of glass can be used to make the artifact.

Fig. 3
Fig. 3

(A) SOP evolution as the pressure on the fiber is increased. (B) Experimental results illustrating the PMD measurement resolution of the measurement system using binary MO polarization rotators. (C) Pressure induced DGD as a function of SOP evolution angles at 1550 nm. Black dots: DGD obtained with binary measurement system. Dashed line: DGD obtained by SOP angle counting. A PMD measurement resolution of 1 fs is clearly demonstrated in both B and C. In addition, the measurement accuracy is also confirmed by the rotation angle of the SOP: the 5.2 fs DGD corresponds to a total SOP rotation angle of 2π at 1550 nm.

Fig. 4
Fig. 4

1st and 2nd order PMD of a 2-cm quartz crystal DGD artifact (calculated DGD=627.7fs), measured with Jones Matrix Eigenanalysis method using 2 nm wavelength step. Similar results are obtained with MMM method.

Fig. 5
Fig. 5

DGD and SOPMD measurement results for a PMD artifact made from two 16 mm long YVO4 crystals with a relative orientation angle of 45 degrees. (A) and (B) DGD values vs. wavelength obtained using JME and MMM methods, respectively. (C) and (D) SOPMD values vs. wavelength obtained using JME and MMM methods, respectively.

Fig. 6
Fig. 6

Measured PDL as a function of wavelength using the JME and MMM methods. (A) PDL vs. wavelength of a “2dB” artifact, and (B) PDL vs. wavelength of a “0.4 dB” artifact. PDL obtained using MMM method has much less wavelength variation than that obtained using JME method.

Fig. 7
Fig. 7

A representation of linearly polarized light misaligned by an angle θ from the slow axis of a PM fiber

Fig. 8
Fig. 8

Poincaré Sphere illustration of polarization state rotation of output light from a PM fiber due to wavelength variation or to thermal or mechanical stress

Fig. 9
Fig. 9

PER measurement results: (A) PER measurement result with low stress on output FC/PC connector. (B) PER measurement result with relatively high stress on output FC/PC connector. The corresponding PER of light in the PM fiber is 39.6 dB; however, the PER of the output light is reduced to 31.1 dB due to stress induced birefringence. The deviation of the SOP evolution circle from the equator can be used to indicate stress induced birefringence at the exit end of the PM fiber.

Tables (4)

Tables Icon

Table 1 Summary of sources of DGD uncertainty in a quartz DGD artifact*

Tables Icon

Table 2 Summary of sources of uncertainty in a YVO4 SOPMD artifact*

Tables Icon

Table 3 Summary of uncertainty sources in a PDL artifact

Tables Icon

Table 4 Statistical results of 50 measurements

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

[ J x P S A J y P S A ] = c * [ Γ 00 Γ 01 Γ 10 1 ] [ J x P S G J y P S G ] ,
J x P S A J y P S A = Γ 00 J J x P S G + Γ 01 J J y P S G Γ 10 J J x P S G + J y P S G
J 0 , x P S G J 0 , y P S A Γ 00 J + J 0 , y P S G J 0 , y P S A Γ 01 J J 0 , x P S G J 0 , x P S A Γ 10 J = J 0 , y P S G J 0 , x P S A J 1 , x P S G J 1 , y P S A Γ 00 J + J 1 , y P S G J 1 , y P S A Γ 01 J J 1 , x P S G J 1 , x P S A Γ 10 J = J 1 , y P S G J 1 , x P S A J 2 , x P S G J 2 , y P S A Γ 00 J + J 2 , y P S G J 2 , y P S A Γ 01 J J 2 , x P S G J 2 , x P S A Γ 10 J = J 2 , y P S G J 2 , x P S A
k 00 Γ 00 J + k 01 Γ 01 J + k 02 Γ 10 J = k 03 k 10 Γ 00 J + k 11 Γ 01 J + k 12 Γ 10 J = k 13 , k 20 Γ 00 J + k 21 Γ 01 J + k 22 Γ 10 J = k 23
Γ 00 = | k 03 k 01 k 02 k 13 k 11 k 12 k 23 k 21 k 22 | | k 00 k 01 k 02 k 10 k 11 k 12 k 20 k 21 k 22 | , Γ 01 = | k 00 k 03 k 02 k 10 k 13 k 12 k 20 k 23 k 22 | | k 00 k 01 k 02 k 10 k 11 k 12 k 20 k 21 k 22 | , Γ 10 = | k 00 k 01 k 03 k 10 k 11 k 13 k 20 k 21 k 23 | | k 00 k 01 k 02 k 10 k 11 k 12 k 20 k 21 k 22 |
P D L = 10 * log | r 1 r 2 | ,
T ( Δ ω ) = Γ ( ω 2 ) Γ ( ω 1 ) 1
τ ( ω ) = | τ s τ f | = | A r g ( ρ s / ρ f ) ω 1 ω 2 | ,
ω = ω 1 + ω 2 2
W ( ω ) = τ ( ω ) q ( ω )
S O P M D = d W ( ω ) d ω = d τ ( ω ) d ω q ( ω ) + τ ( ω ) d q ( ω ) d ω
S i P S G = ( S 0 i P S G S 1 i P S G S 2 i P S G S 3 i P S G ) ,
S i P S A = ( S 0 i P S A S 1 i P S A S 2 i P S A S 3 i P S A ) = ( m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ) ( S 0 i P S G S 1 i P S G S 2 i P S G S 3 i P S G )
S PSA = ( S 00 P S A S 01 P S A S 02 P S A S 03 P S A S 04 P S A S 05 P S A S 10 P S A S 11 P S A S 12 P S A S 13 P S A S 14 P S A S 15 P S A S 20 P S A S 21 P S A S 22 P S A S 23 P S A S 24 P S A S 25 P S A S 30 P S A S 31 P S A S 32 P S A S 33 P S A S 34 P S A S 35 P S A ) = ( m 00 m 01 m 02 m 03 m 10 m 11 m 12 m 13 m 20 m 21 m 22 m 23 m 30 m 31 m 32 m 33 ) ( S 00 P S G S 01 P S G S 02 P S G S 03 P S G S 04 P S G S 05 P S G S 10 P S G S 11 P S G S 12 P S G S 13 P S G S 14 P S G S 15 P S G S 20 P S G S 21 P S G S 22 P S G S 23 P S G S 24 P S G S 25 P S G S 30 P S G S 31 P S G S 32 P S G S 33 P S G S 34 P S G S 35 P S G ) = M S P S G
M = S PSA ( S PSG ) T [ S PSG ( S PSG ) T ] 1
P D L = 10 × log ( P M i n P M a x ) = 10 × log m 00 m 01 2 + m 02 2 + m 03 2 m 00 + m 01 2 + m 02 2 + m 03 2
M Δ ( ω ¯ ) = M ( ω 2 ) M 1 ( ω 1 )
D G D = Re ( W W )
q ( ω ) ± = ± Ω + Ω Λ Ω Λ
D G D = Δ n g L / c
Δ n g = Δ n λ d Δ n d λ
S O P M D = τ 1 τ 1 sin ( 2 θ )
D G D = τ 1 2 + τ 1 2 + 2 τ 1 τ 2 cos ( 2 θ )
T p = sin 2 θ i sin 2 θ t sin 2 ( θ i + θ t ) cos 2 ( θ i θ t )
T s = sin 2 θ i sin 2 θ t sin 2 ( θ i + θ t ) ,
P D L = | 10 log ( T p T s ) | = 10 log [ cos 2 ( θ i θ t ) ]
P E R = 10 log ( tan 2 θ )
( cos 2 θ sin 2 θ cos δ sin 2 θ sin δ )
( cos 2 ψ cos 2 θ sin 2 ψ sin 2 θ cos δ sin 2 ψ cos 2 θ + cos 2 ψ sin 2 θ cos δ sin 2 θ sin δ )
P E R = 10 log ( sin 2 θ cos 2 θ ) = 10 log ( 1 cos 2 θ 1 + cos 2 θ ) = 10 log ( 1 1 R 2 1 + 1 R 2 )
L B = λ Δ n
D G D = Δ n g L / c
Δ n g = Δ n λ d Δ n d λ .
L B = λ D G D * c L + λ d Δ n d λ
n 2 = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3 ,
L B = λ * y D G D * c L
y = 1 1 n [ n 2 1 ( B 1 λ 4 ( λ 2 C 1 ) 2 + B 2 λ 4 ( λ 2 C 2 ) 2 + B 3 λ 4 ( λ 2 C 3 ) 2 ) ]
L B λ 2 = λ 2 λ 1 L B λ 1

Metrics