Abstract

The time delay (TD) signature concealment of optical feedback induced chaos in an external cavity semiconductor laser is experimentally demonstrated. Both the evolution curve and the distribution map of TD signature are obtained in the parameter space of external feedback strength and injection current. The optimum parameter scope of the TD signature concealment is also specified. Furthermore, the approximately periodic evolution relation between TD signature and external cavity length is observed and indicates that the intrinsic relaxation oscillation of semiconductor laser may play an important role during the process of TD signature suppression.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
    [CrossRef]
  2. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
    [CrossRef]
  3. F. Y. Lin and J. M. Liu, “chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
    [CrossRef]
  4. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [CrossRef]
  5. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [CrossRef]
  6. M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
    [CrossRef] [PubMed]
  7. R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
    [CrossRef]
  8. M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
    [CrossRef]
  9. M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
    [CrossRef]
  10. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [CrossRef] [PubMed]
  11. J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
    [CrossRef]
  12. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
    [CrossRef] [PubMed]
  13. D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
    [CrossRef]

2010

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

2009

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[CrossRef] [PubMed]

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

2008

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

2007

2005

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

2004

F. Y. Lin and J. M. Liu, “chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

1998

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

1996

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Bezruchko, B. P.

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

Bünner, M. J.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Cao, L. P.

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

Citrin, D. S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

Daudén, J.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

Davis, P.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Giaquinta, A.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

Hegger, R.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Kantz, H.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

Karavaev, A. S.

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

Kittel, A.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Lee, M. W.

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Lin, F. Y.

F. Y. Lin and J. M. Liu, “chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

Liu, J. M.

F. Y. Lin and J. M. Liu, “chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

Locquet, A.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Meyer, T.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Ortin, S.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Parisi, J.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Ponomarenko, V. I.

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

Popp, M.

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Prokhorov, M. D.

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

Rees, P.

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Rontani, D.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Sciamanna, M.

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
[CrossRef] [PubMed]

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Shore, K. A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Toral, R.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

Uchida, A.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Valle, A.

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

Vicente, R.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

Wu, J. G.

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[CrossRef] [PubMed]

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

Wu, Z. M.

Wu, Z.-M.

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

Xia, G. Q.

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
[CrossRef] [PubMed]

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

Yoshimura, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

IEE Proc., Optoelectron.

M. W. Lee, P. Rees, K. A. Shore, S. Ortin, L. Pesquera, and A. Valle, “Dynamical characterisation of laser diode subject to double optical feedback for chaotic optical communications,” IEE Proc., Optoelectron. 152(2), 97–102 (2005).
[CrossRef]

IEEE J. Quantum Electron.

R. Vicente, J. Daudén, P. Colet, and R. Toral, “Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop,” IEEE J. Quantum Electron. 41(4), 541–548 (2005).
[CrossRef]

F. Y. Lin and J. M. Liu, “chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron. 40(6), 815–820 (2004).
[CrossRef]

D. Rontani, A. Locquet, M. Sciamanna, D. S. Citrin, and S. Ortin, “Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view,” IEEE J. Quantum Electron. 45(7), 879–891 (2009).
[CrossRef]

Nat. Photonics

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[CrossRef]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[CrossRef]

Nature

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcıa-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 437(7066), 343–346 (2005).
[CrossRef]

Opt. Commun.

J. G. Wu, G. Q. Xia, L. P. Cao, and Z.-M. Wu, Z. Wu, and M. Wu, “Experimental investigations on the external cavity time signature in chaotic output of an incoherent optical feedback external cavity semiconductor laser,” Opt. Commun. 282(15), 3153–3156 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

M. J. Bünner, M. Popp, T. Meyer, A. Kittel, and J. Parisi, “Tool to recover scalar time-delay systems from experimental time series,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(4), R3082–3085 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. Hegger, M. J. Bünner, H. Kantz, and A. Giaquinta, “Identifying and modeling delay feedback systems,” Phys. Rev. Lett. 81(3), 558–561 (1998).
[CrossRef]

Physica D

M. D. Prokhorov, V. I. Ponomarenko, A. S. Karavaev, and B. P. Bezruchko, “Reconstruction of time-delayed feedback systems from time series,” Physica D 203(3-4), 209–223 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup. Laser: DFB semiconductor laser; BS: Beam splitter; M: Mirror; OI: Optical isolator; NDF: Neutral density filter; FC: Fiber coupler; PD: Photodetector; OSA: Optical Spectrum Analyzer; T: Feedback power monitoring point.

Fig. 2
Fig. 2

Recorded chaotic intensity time series (A1) and associated power spectrum (A2) for Fext ≈0.038, and TD signature suppressed chaotic intensity time series (B1) and associated power spectrum (B2) for Fext ≈0.0013. The total time length of the recorded data is 500ns.

Fig. 3
Fig. 3

Recorded chaotic intensity time series (left column), SF curve (middle column) and MI curve (right column) under different external feedback strengths, where (row A) Fext ≈0.038, (row B) Fext ≈0.019, (row C) Fext ≈0.0064, (row D) Fext ≈0.0013, (row E) Fext ≈0.0003, respectively.

Fig. 4
Fig. 4

The variation curve of amplitude ρ (A) and location τ (B) of the maximum SF peak in time window 1.5ns<Δt<2.5ns under different Fext values, where the time window has been marked by dashed lines in SF curves of Fig. 3.

Fig. 5
Fig. 5

The distribution map of the amplitude ρ (A) and the location τ (B) under different injection currents and different Fext , where the black dots represent the measured points and the smooth color surfaces are obtained by triangle-based linear interpolation.

Fig. 6
Fig. 6

Evolution map of TD signature for Fext is fixed at about 0.00013 and external cavity length varies from 122mm to 477mm (corresponding Tdelay changes from 0.81ns to 3.18ns), where the measurement step of external cavity length is 5mm and the different colors represent different SF values. The detailed chaotic time series (A1-E1), associated SF curves (A2-E2) and MI curves (A3-E3) are for Lcav4 ≈417mm (Row A), Lcav3 ≈337mm (Row B), Lcav = 287mm (Row C), Lcav2 ≈247mm (Row D) and Lcav1 ≈167mm (Row E), respectively.

Metrics