Abstract

We measured the intensity correlation of true thermal light scattered from cold atoms in an optical molasses. Using a single-mode fiber as a transverse mode filter, measurement with maximally high spatial coherence was realized, allowing us to observe ideal photon bunching with unprecedented precision. The measured intensity correlation functions showed a definite bimodal structure with fast damped oscillation from the maximum value of 2.02(3) and slow monotonic decay toward unity. The oscillation can be understood as an interference between elastic and inelastic scattering fields in resonance fluorescence.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hanbury Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature (London) 177,27-29 (1956).
    [CrossRef]
  2. D. Kleppner, "Hanbury Brown’s steamroller," Phys. Today 61,8-9 (2008).
    [CrossRef]
  3. R. Loudon, The Quantum Theory of Light (Oxford Univ. Press, London, 1983).
  4. F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
    [CrossRef]
  5. B. L. Morgan, and L. Mandel, "Measurement of Photon Bunching in a Thermal Light Beam," Phys. Rev. Lett. 16,1012-1015 (1966).
    [CrossRef]
  6. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, "Correlated two-photon imaging with true thermal light," Opt. Lett. 30,2354-2356 (2005).
    [CrossRef] [PubMed]
  7. C. Jurczak, K. Sengstock,amazon R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115,480-484 (1995).
    [CrossRef]
  8. C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).
  9. S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
    [CrossRef] [PubMed]
  10. R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
    [CrossRef] [PubMed]
  11. H. J. Kimble, and L. Mandel, "Theory of resonance fluorescence," Phys. Rev. A 13,2123-2144 (1976).
    [CrossRef]
  12. M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).
  13. B. Chu, Laser Light Scattering (Academic Press, San Diego, CA, 1991).
  14. C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
    [CrossRef] [PubMed]
  15. B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Systems," Phys. Rev. 188,1969-1975 (1969).
    [CrossRef]
  16. B. Gao, "Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: Resonance fluorescence," Phys. Rev. A 50,4139-4156 (1994).
    [CrossRef] [PubMed]
  17. M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
    [CrossRef]
  18. I. R. Senitzky, "Quantum-Mechanical Saturation in Resonance Fluorescence," Phys. Rev. A 6,1171-1174 (1972).
    [CrossRef]
  19. G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
    [CrossRef]
  20. S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
    [CrossRef]
  21. S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
    [CrossRef]
  22. O. Assaf and E. Akkermans, "Intensity Correlations and Mesoscopic Fluctuations of Diffusing Photons in Cold Atoms," Phys. Rev. Lett. 98,083601 (2007).
    [CrossRef] [PubMed]

2008 (1)

D. Kleppner, "Hanbury Brown’s steamroller," Phys. Today 61,8-9 (2008).
[CrossRef]

2007 (1)

O. Assaf and E. Akkermans, "Intensity Correlations and Mesoscopic Fluctuations of Diffusing Photons in Cold Atoms," Phys. Rev. Lett. 98,083601 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

1996 (2)

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

1995 (1)

C. Jurczak, K. Sengstock,amazon R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115,480-484 (1995).
[CrossRef]

1994 (1)

B. Gao, "Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: Resonance fluorescence," Phys. Rev. A 50,4139-4156 (1994).
[CrossRef] [PubMed]

1990 (1)

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

1982 (1)

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

1981 (1)

S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
[CrossRef]

1977 (1)

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

1976 (1)

H. J. Kimble, and L. Mandel, "Theory of resonance fluorescence," Phys. Rev. A 13,2123-2144 (1976).
[CrossRef]

1972 (1)

I. R. Senitzky, "Quantum-Mechanical Saturation in Resonance Fluorescence," Phys. Rev. A 6,1171-1174 (1972).
[CrossRef]

1969 (1)

B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Systems," Phys. Rev. 188,1969-1975 (1969).
[CrossRef]

1966 (2)

F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
[CrossRef]

B. L. Morgan, and L. Mandel, "Measurement of Photon Bunching in a Thermal Light Beam," Phys. Rev. Lett. 16,1012-1015 (1966).
[CrossRef]

1956 (1)

R. Hanbury Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature (London) 177,27-29 (1956).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

Akkermans, E.

O. Assaf and E. Akkermans, "Intensity Correlations and Mesoscopic Fluctuations of Diffusing Photons in Cold Atoms," Phys. Rev. Lett. 98,083601 (2007).
[CrossRef] [PubMed]

Arecchi, F. T.

F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
[CrossRef]

Aspect, A.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

Assaf, O.

O. Assaf and E. Akkermans, "Intensity Correlations and Mesoscopic Fluctuations of Diffusing Photons in Cold Atoms," Phys. Rev. Lett. 98,083601 (2007).
[CrossRef] [PubMed]

Bali, S.

R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

Beeler, M.

R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

Brown, A. C.

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

Chen, X. H.

Courtois, J.-Y.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

Desruelle, B.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

Feeney, L.

R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

Gao, B.

B. Gao, "Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: Resonance fluorescence," Phys. Rev. A 50,4139-4156 (1994).
[CrossRef] [PubMed]

Gatti, E.

F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
[CrossRef]

Gould, P. L.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Hanbury Brown, R.

R. Hanbury Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature (London) 177,27-29 (1956).
[CrossRef]

Hassan, S. S.

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
[CrossRef]

Hildred, G. P.

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

Hoffmann, D.

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

Jurczak, C.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

C. Jurczak, K. Sengstock,amazon R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115,480-484 (1995).
[CrossRef]

Kim, S.

R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

Kimble, H. J.

H. J. Kimble, and L. Mandel, "Theory of resonance fluorescence," Phys. Rev. A 13,2123-2144 (1976).
[CrossRef]

Kleppner, D.

D. Kleppner, "Hanbury Brown’s steamroller," Phys. Today 61,8-9 (2008).
[CrossRef]

Lawande, S. V.

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
[CrossRef]

Lett, P. D.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Mandel, L.

H. J. Kimble, and L. Mandel, "Theory of resonance fluorescence," Phys. Rev. A 13,2123-2144 (1976).
[CrossRef]

B. L. Morgan, and L. Mandel, "Measurement of Photon Bunching in a Thermal Light Beam," Phys. Rev. Lett. 16,1012-1015 (1966).
[CrossRef]

Mollow, B. R.

B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Systems," Phys. Rev. 188,1969-1975 (1969).
[CrossRef]

Morgan, B. L.

B. L. Morgan, and L. Mandel, "Measurement of Photon Bunching in a Thermal Light Beam," Phys. Rev. Lett. 16,1012-1015 (1966).
[CrossRef]

Narducci, L. M.

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

Phillips, W. D.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Puri, R. R.

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
[CrossRef]

Rolston, S. L.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Sengstock, K.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

C. Jurczak, K. Sengstock,amazon R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115,480-484 (1995).
[CrossRef]

Senitzky, I. R.

I. R. Senitzky, "Quantum-Mechanical Saturation in Resonance Fluorescence," Phys. Rev. A 6,1171-1174 (1972).
[CrossRef]

Sim’an, J.

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

Sona, A.

F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
[CrossRef]

Stites, R.

R. Stites, M. Beeler, L. Feeney, S. Kim, and S. Bali, "Sensitive measurement of radiation trapping in cold-atom clouds by intensity correlation detection," Opt. Lett. 29,2713-2715 (2004).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

Tanner, C. E.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Twiss, R. Q.

R. Hanbury Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature (London) 177,27-29 (1956).
[CrossRef]

Vetri, G.

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

Walker, T.

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

Watts, R. N.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Westbrook, C. I.

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

Wu, L. A.

Zhai, Y. H.

Zhang, D.

J. Phys. B: At. Mol. Phys. (2)

S. V. Lawande, R. R. Puri, and S. S. Hassan, "Non-resonant effects in the fluorescent Dicke model I. Exact steady state analysis," J. Phys. B: At. Mol. Phys. 14,4171-4189 (1981).
[CrossRef]

S. S. Hassan, G. P. Hildred, R. R. Puri, and S. V. Lawande, "Non-resonant effects in the fluorescent Dicke model II. Semiclassical and quantal results," J. Phys. B: At. Mol. Phys. 15,1029-1049 (1982).
[CrossRef]

Nature (London) (1)

R. Hanbury Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature (London) 177,27-29 (1956).
[CrossRef]

Opt. Commun. (1)

C. Jurczak, K. Sengstock,amazon R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, "Observation of intensity correlations in the fluorescence from laser cooled atoms," Opt. Commun. 115,480-484 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. (1)

F. T. Arecchi, E. Gatti, and A. Sona "Time distribution of photons from coherent and Gaussian sources," Phys. Lett. 20,27-29 (1966).
[CrossRef]

Phys. Rev. (1)

B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Systems," Phys. Rev. 188,1969-1975 (1969).
[CrossRef]

Phys. Rev. A (7)

B. Gao, "Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: Resonance fluorescence," Phys. Rev. A 50,4139-4156 (1994).
[CrossRef] [PubMed]

M. Beeler, R. Stites, S. Kim, L. Feeney, and S. Bali, "Sensitive detection of radiation trapping in cold-atom clouds," Phys. Rev. A 68,013411 (2003).
[CrossRef]

I. R. Senitzky, "Quantum-Mechanical Saturation in Resonance Fluorescence," Phys. Rev. A 6,1171-1174 (1972).
[CrossRef]

G. S. Agarwal, A. C. Brown, L. M. Narducci, and G. Vetri, "Collective atomic effects in resonance fluorescence," Phys. Rev. A 15,1613-1624 (1977).
[CrossRef]

C. Jurczak, B. Desruelle, K. Sengstock, J.-Y. Courtois, C. I. Westbrook, and A. Aspect, "Atomic Transport in an Optical Lattice: An Investigation through Polarization-Selective Intensity Correlations," Phys. Rev. A 77,1727-1730 (1996).

S. Bali, D. Hoffmann, J. Sim’an, and T. Walker, "Measurements of intensity correlations of scattered light from laser-cooled atoms," Phys. Rev. A 53,3469-3472 (1996).
[CrossRef] [PubMed]

H. J. Kimble, and L. Mandel, "Theory of resonance fluorescence," Phys. Rev. A 13,2123-2144 (1976).
[CrossRef]

Phys. Rev. Lett. (3)

B. L. Morgan, and L. Mandel, "Measurement of Photon Bunching in a Thermal Light Beam," Phys. Rev. Lett. 16,1012-1015 (1966).
[CrossRef]

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, P. D. Lett, and P. L. Gould, "Localization of atoms in a three-dimensional standing wave," Phys. Rev. Lett. 65,33-36 (1990).
[CrossRef] [PubMed]

O. Assaf and E. Akkermans, "Intensity Correlations and Mesoscopic Fluctuations of Diffusing Photons in Cold Atoms," Phys. Rev. Lett. 98,083601 (2007).
[CrossRef] [PubMed]

Phys. Today (1)

D. Kleppner, "Hanbury Brown’s steamroller," Phys. Today 61,8-9 (2008).
[CrossRef]

Other (3)

R. Loudon, The Quantum Theory of Light (Oxford Univ. Press, London, 1983).

M. O. Scully, and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

B. Chu, Laser Light Scattering (Academic Press, San Diego, CA, 1991).

Supplementary Material (1)

» Media 1: MOV (1015 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the setup for optical molasses. (a) Atoms captured in the MOT were pushed out by a weak laser beam and continuously transferred to the optical molasses through a differential pumping tube 5 mm in diameter. (b) Fluorescence image of the optical molasses. The steady state number of atoms contained in the optical molasses was 3 × 109. Movie of the optical molasses loading (Media 1).

Fig. 2.
Fig. 2.

Optical molasses detection setup. (a) Relationships between the optical setup and correlation length. (b) Schematic diagram of measurement setup for the second-order intensity correlation function. A facet of a single-mode fiber was directed to the reduced image of the molasses and the mode-filtered light was led to a photon correlator. SMF: single-mode fiber, FBS: fiber beam splitter, SPCM: single photon counting module, TAC: time-to-amplitude converter, and MCA: multi-channel analyzer.

Fig. 3.
Fig. 3.

Measurements of the second-order intensity correlation as a function of delay time for various detunings. (a) Long-time decay of the correlation function. The damping time was determined by the temperature of the cold atoms. (b) Short-time decay of the correlation function. A fast damped oscillation was observed with a short decay time determined by the lifetime of the excited state. (c), (d) Theoretical simulations based on Eqs. (2)–(5).

Fig. 4.
Fig. 4.

Coherent fraction of the total scattered light in g (2)(τ) for several detunings. Circles are experimental data, and red solid line is the theoretical curve R(δ), representing the ratio of the coherent Rayleigh scattered light to the total scattered light.

Fig. 5.
Fig. 5.

(a) Oscillation frequency in g (2)(τ). Triangles are experimental points, and red solid line is the effective Rabi frequency Ωeff(δ). (b) Theoretical curve of the spectral density of the fluorescence for several detuning parameters versus the relative frequency.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( 2 ) ( τ ) = I ( t ) I ( t + τ ) I ( t ) 2 .
g ( 2 ) ( τ ) = 1 + β g ( 1 ) ( τ ) 2 ,
g ( 1 ) ( τ ) = g D ( 1 ) ( τ ) · g H ( 1 ) ( τ ) ,
g D ( 1 ) ( τ ) = i = 1 6 a i exp ( α i σ 2 τ 2 2 ) .
g H ( 1 ) ( τ ) = δ 2 + γ 2 δ 2 + γ 2 + Ω 2 / 2 Ω 2 2 j k 1 3 p j + 2 γ ( p j p k ) ( p j p 1 ) exp ( p j τ ) ,
R ( δ ) = ( δ 2 + γ 2 δ 2 γ 2 Ω 2 / 2 ) 2 .

Metrics