Abstract

We investigate the optical properties of Dibenzoterrylene (DBT) molecules in a spin-coated crystalline film of anthracence. By performing single molecule studies, we show that the dipole moments of the DBT molecules are oriented parallel to the plane of the film. Despite a film thickness of only 20 nm, we observe an exceptional photostability at room temperature and photon count rates around 106 per second from a single molecule. These properties together with an emission wavelength around 800 nm make this system attractive for applications in nanophotonics and quantum optics.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
    [CrossRef]
  2. S. Scheel, "Single-photon sources: an introduction," J. Mod. Opt. 56, 141-160 (2009).
    [CrossRef]
  3. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
    [CrossRef] [PubMed]
  4. L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
    [CrossRef]
  5. B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
    [CrossRef] [PubMed]
  6. R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
    [CrossRef]
  7. A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
    [CrossRef]
  8. F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
    [CrossRef]
  9. C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
    [CrossRef]
  10. A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
    [CrossRef] [PubMed]
  11. J. B. Trebbia, H. Ruf, P. Tamarat, and B. Lounis, "Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule," Opt. Express 17, 23986-23991 (2009).
    [CrossRef]
  12. M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
    [CrossRef]
  13. L. Rogobete and C. Henkel, "Spontaneous emission in a subwavelength environment characterized by boundary integral equations," Phys. Rev. A 70, 63815 (2004).
    [CrossRef]
  14. R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
    [CrossRef]
  15. J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
    [CrossRef]
  16. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
    [CrossRef]
  17. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
    [CrossRef] [PubMed]
  18. M. A. Lieb, J. M. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
    [CrossRef]

2009

2007

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

2006

A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
[CrossRef]

2005

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

2004

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

M. A. Lieb, J. M. Zavislan, and L. Novotny, "Single-molecule orientations determined by direct emission pattern imaging," J. Opt. Soc. Am. B 21, 1210-1215 (2004).
[CrossRef]

L. Rogobete and C. Henkel, "Spontaneous emission in a subwavelength environment characterized by boundary integral equations," Phys. Rev. A 70, 63815 (2004).
[CrossRef]

2002

R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
[CrossRef]

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

2000

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

1998

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

1996

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

1993

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

Bernard, J.

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

Bordat, P.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Brown, R.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Eggeling, C.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

Fleury, L.

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

Gerhardt, I.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Hecht, B.

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

Henkel, C.

L. Rogobete and C. Henkel, "Spontaneous emission in a subwavelength environment characterized by boundary integral equations," Phys. Rev. A 70, 63815 (2004).
[CrossRef]

Hettich, C.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Hofmann, C.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

Jelezko, F.

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

Kol’chenko, M. A.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

Kozankiewicz, B.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

Kreiter, M.

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Lieb, M. A.

Lounis, B.

J. B. Trebbia, H. Ruf, P. Tamarat, and B. Lounis, "Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule," Opt. Express 17, 23986-23991 (2009).
[CrossRef]

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Moerner, W. E.

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

Nicolet, A.

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

Nicolet, A. A. L.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

Novotny, L.

Orrit, M.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
[CrossRef]

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Pfab, R. J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Prummer, M.

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Renn, A.

A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
[CrossRef]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Rigler, R.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

Rogobete, L.

L. Rogobete and C. Henkel, "Spontaneous emission in a subwavelength environment characterized by boundary integral equations," Phys. Rev. A 70, 63815 (2004).
[CrossRef]

Ruf, H.

Sandoghdar, V.

A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
[CrossRef]

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Scheel, S.

S. Scheel, "Single-photon sources: an introduction," J. Mod. Opt. 56, 141-160 (2009).
[CrossRef]

Seelig, J.

A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
[CrossRef]

Seidel, C. A. M.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

Sick, B.

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Talon, H.

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

Tamarat, P.

J. B. Trebbia, H. Ruf, P. Tamarat, and B. Lounis, "Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule," Opt. Express 17, 23986-23991 (2009).
[CrossRef]

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

Trebbia, J. B.

van Oijen, A. M.

R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
[CrossRef]

Verberk, R.

R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Widengren, J.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

Wild, U. P.

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Zavislan, J. M.

Zimmermann, J.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

Zumofen, G.

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

Anal. Chem.

C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, "Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis," Anal. Chem. 70, 2651-2659 (1998).
[CrossRef] [PubMed]

Chem. Phys.

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, "Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals," Chem. Phys. 318, 1-6 (2005).
[CrossRef]

Chem. Phys. Lett.

R. J. Pfab, J. Zimmermann, C. Hettich, I. Gerhardt, A. Renn, and V. Sandoghdar, "Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl," Chem. Phys. Lett. 387, 490-495 (2004).
[CrossRef]

ChemPhysChem

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, "Single dibenzoterrylene molecules in an anthracene crystal: Main insertion sites," ChemPhysChem 8, 1929-1936 (2007).
[CrossRef] [PubMed]

J. Chem. Phys.

M. Kreiter and M. Prummer and B. Hecht and U. P. Wild, "Orientation dependence of fluorescence lifetimes near an interface," J. Chem. Phys. 117, 9430-9433 (2002).
[CrossRef]

J. Bernard, L. Fleury, H. Talon, and M. Orrit, "Photon bunching in the fluorescence from single molecules: A probe for intersystem crossing," J. Chem. Phys. 98, 850-859 (1993).
[CrossRef]

J. Mod. Opt.

S. Scheel, "Single-photon sources: an introduction," J. Mod. Opt. 56, 141-160 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

F. Jelezko, P. Tamarat, B. Lounis, and M. Orrit, "Dibenzoterrylene in naphthalene: A new crystalline system for single molecule spectroscopy in the near infrared," J. Phys. Chem. 100, 13892-13894 (1996).
[CrossRef]

Mol. Phys.

A. Renn, J. Seelig, and V. Sandoghdar, "Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level," Mol. Phys. 104, 409-414 (2006).
[CrossRef]

L. Fleury, B. Sick, G. Zumofen, B. Hecht, and U. P. Wild, "High photo-stability of single molecules in an organic crystal at room temperature observed by scanning confocal optical microscopy," Mol. Phys. 95, 1333-1338 (1998).
[CrossRef]

Nat. Photonics

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency singlephoton source with polarization control," Nat. Photonics 1, 704-708 (2007).
[CrossRef]

Nature

B. Lounis and W. E. Moerner, "Single photons on demand from a single molecule at room temperature," Nature 407, 491-493 (2000).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. A

L. Rogobete and C. Henkel, "Spontaneous emission in a subwavelength environment characterized by boundary integral equations," Phys. Rev. A 70, 63815 (2004).
[CrossRef]

Phys. Rev. B

R. Verberk, A. M. van Oijen, and M. Orrit, "Simple model for the power-law blinking of single semiconductor nanocrystals," Phys. Rev. B 66, 233202 (2002).
[CrossRef]

Phys. Rev. Lett.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 85, 290-293 (2000).
[CrossRef] [PubMed]

Rep. Prog. Phys.

B. Lounis and M. Orrit, "Single-photon sources," Rep. Prog. Phys. 68, 1129-1179 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a),(b) Polarization microscope images of a thin AC film, spin coated on a glass cover slip. The analyzer is oriented perpendicular to the polarizer. In (a) one of the main crystal axes is aligned with the incoming polarized light. The contrast between cover glass and crystalline features is therefore low. In (b) the sample is rotated by 45°. This leads to a birefringence of the crystalline AC film which rotates the polarization of the incoming light. The contrast is therefore maximal. (c) AFM topography image of the sample. The well defined growth angles give further evidence for the crystalline nature of the film. (d) Cross section as indicated in (c). The sample is typically flat with a height of a few tens of nanometers.

Fig. 2.
Fig. 2.

(a) Wide field image, where the sample was simultaneously illuminated by a white-light source and a laser. Individual molecules are clearly visible within the crystalline domains. (b) Fluorescence lifetime measurement on a DBT molecule. The red curve represents an exponential fit to the experimental data, yielding a decay time of 4.8 ns. The small but finite fluorescence signal at the beginning of the decay curve is reminiscent of the excitation by the previous laser pulse. Inset: fluorescence spectrum of a single DBT molecule. (c) Photon-correlation measurement under CW excitation. Strong anti-bunching is observable. The red curve is a fit to the experimental data. (d) Histogram of the inter-photon arrival times. The obtained decay time yields a 1.5 μs lifetime of the triplet state. (e) Saturation measurement: number of detected photons per second depending on the pump power. The red curve is a two-level model fit to the saturation behavior [5]. (f) Photostability of DBT molecules: the insets show wide field images at the beginning of the measurement and after 10 hours of continuous illumination. Ten molecules out of 43 could not be photobleached.

Fig. 3.
Fig. 3.

(a) Inset: Back focal plane image of a single molecule. Angular distribution of the emitted photons for two cross sections which correspond to s and p polarization. (b) Emission pattern of p-polarized light from an ensemble of molecules, fitted with the angular distribution of a single dipole one degree out of plane (red curve). (c) Dependency of the detected fluorescence intensity of a single molecule on the orientation of a polarizer in the detection path.

Metrics