Abstract

We propose and theoretically study a metallo-dielectric photonic crystal (MDPhC) based on metallic annular aperture arrays (AAA) associated to a nonlinear material (LiNbO 3) for the second harmonic generation (SHG). An optimal structure design can be found thanks to the relations that link the geometrical parameters to the operating point namely the wavelength of the fundamental and SHG signals. A slow light phenomenon, which occurs at the cut-off frequency of the guided mode through the annular cavities, is at the origin of the SHG signal enhancement. The benefit of the AAA is demonstrated through a comparison with cylindrical aperture arrays.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton, 1995).
  4. W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
    [CrossRef]
  5. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
    [CrossRef] [PubMed]
  6. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
    [CrossRef] [PubMed]
  7. P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
    [CrossRef] [PubMed]
  8. M. Roussey, F. Baida, and M.-P. Bernal, "Experimental and theoretical observation of the slow light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24(6), 1416-1422 (2007).
    [CrossRef]
  9. L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, "Surface emitting microlaser based on 2d photonic crystal rod lattices," Opt. Express 17, 9780-9788 (2009).
    [CrossRef] [PubMed]
  10. F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metalic films," Opt. Commun. 209, 17-22 (2002).
    [CrossRef]
  11. W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
    [CrossRef]
  12. F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
    [CrossRef]
  13. F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
    [CrossRef]
  14. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
    [CrossRef]
  15. Q. Cao and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88(5), 057403-1 (2002).
    [CrossRef]
  16. H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique, (Hermés Science, 2005).
  17. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, "Second harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arragement," Opt. Express 15(21), 13894 (2007).
    [CrossRef] [PubMed]
  18. T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
    [CrossRef]
  19. S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
    [CrossRef]
  20. M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).
  21. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
    [CrossRef]

2009 (3)

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, "Surface emitting microlaser based on 2d photonic crystal rod lattices," Opt. Express 17, 9780-9788 (2009).
[CrossRef] [PubMed]

2007 (3)

2006 (4)

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

2005 (2)

T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
[CrossRef]

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

2004 (2)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
[CrossRef] [PubMed]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

2002 (2)

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metalic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Q. Cao and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88(5), 057403-1 (2002).
[CrossRef]

1991 (1)

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

1987 (2)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Abdenour, A.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Baida, F.

Baida, F. I.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
[CrossRef]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metalic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Bainier, C.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Basov, D. N.

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
[CrossRef]

Belkhir, A.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

Bermel, P.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Bernal, M.-P.

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

M. Roussey, F. Baida, and M.-P. Bernal, "Experimental and theoretical observation of the slow light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24(6), 1416-1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Blair, S.

Brueck, S. R. J.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Cao, Q.

Q. Cao and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88(5), 057403-1 (2002).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Dizian, S.

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

El Daif, O.

Fan, W.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Ferrier, L.

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Granet, G.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

Guizal, B.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

Harada, S.

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

Jiao, X.

Joannopoulos, J. D.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Krishna, S.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Labeke, D. V.

T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
[CrossRef]

Lacour, F.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Lalanne, P.

Q. Cao and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88(5), 057403-1 (2002).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Laroche, T.

T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
[CrossRef]

Letartre, X.

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Malloy, K. J.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Mazurczyk, R.

Moreau, A.

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

Muralt, P.

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

Osgood, R. M.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Padilla, W. J.

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
[CrossRef]

Panoiu, N.-C.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Poujet, Y.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

Rodriguez, A.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

Rojo Romeo, P.

Roussey, M.

M. Roussey, F. Baida, and M.-P. Bernal, "Experimental and theoretical observation of the slow light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24(6), 1416-1422 (2007).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

Sabac, A.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Salut, R.

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

Salvi, J.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

Seassal, C.

Smith, D. R.

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
[CrossRef]

Soljacic, M.

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
[CrossRef] [PubMed]

Spajer, M.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Van Labeke, D.

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metalic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

Viktorovitch, P.

Xu, T.

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Zhang, G. P.

Zhang, S.

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Appl. Phys. B (1)

F. I. Baida, D. Van Labeke, G. Granet, A. Moreau, and A. Belkhir, "Origin of the super-enhanced light transmission through a 2-d metallic annular aperture array: a study of photonic bands," Appl. Phys. B 79(1), 1-8 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

S. Dizian, S. Harada, R. Salut, P. Muralt, and M.-P. Bernal. "Strong imrovement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett.,  95, 101103 (2009).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, R. Salut, D. Van Labeke, F. I. Baida, "Electro-optic effect exaltation on lithium niobate photonic crystals due to the slow photons," Appl. Phys. Lett. 24(241110) (2006).

J. Opt. Soc. Am. B (2)

T. Laroche, F. I. Baida, and D. V. Labeke, "Three-dimensional finite-difference time-domain study of enhanced second harmonic generation at the end of a apertureless scanning near-field optical microscope metal tip," J. Opt. Soc. Am. B 22(5), 13894 (2005).
[CrossRef]

M. Roussey, F. Baida, and M.-P. Bernal, "Experimental and theoretical observation of the slow light effect on a tunable photonic crystal," J. Opt. Soc. Am. B 24(6), 1416-1422 (2007).
[CrossRef]

Maters. Today (1)

W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Maters. Today 9, 28 (2006).
[CrossRef]

Nano Lett. (1)

W. Fan, S. Zhang, N.-C. Panoiu, A. Abdenour, S. Krishna, R. M. Osgood, K. J. Malloy, and S. R. J. Brueck, "Second harmonic generation from a nanopatterned isotropic nonlinear material," Nano Lett. 6, 1027-1030 (2006).
[CrossRef]

Nat. Mater. (1)

M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
[CrossRef] [PubMed]

Opt. Commun. (2)

F. I. Baida and D. Van Labeke, "Light transmission by subwavelength annular aperture arrays in metalic films," Opt. Commun. 209, 17-22 (2002).
[CrossRef]

F. I. Baida, Y. Poujet, J. Salvi, D. Van Labeke, and B. Guizal, "Extraordinary transmission beyond the cut-off through sub-k annular aperture arrays," Opt. Commun. 282, 1463-1466 (2009).
[CrossRef]

Opt. Express (2)

Opt. Maters (1)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Maters 27/8, 1421-1425 (2005).
[CrossRef]

Phys. Rev. B (1)

F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, "Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes," Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Phys. Rev. Lett. (5)

Q. Cao and P. Lalanne, "Negative role of surface plasmon in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88(5), 057403-1 (2002).
[CrossRef]

P. Bermel, A. Rodriguez, J. D. Joannopoulos, and M. Soljacic, "Tailoring optical nonlinearities via the purcell effect," Phys. Rev. Lett. 99, 053601 (2007).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: the face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals (Princeton, 1995).

H. Rigneault, J.-M. Lourtioz, C. Delalande, and A. Levensen, La nanophotonique, (Hermés Science, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic view of the proposed structure. The period is defined by p. Ro and Ri are the outer and the inner radii respectively while h is the thickness of the metallic film. Note that the substrate material exists also inside the apertures.

Fig. 2.
Fig. 2.

(a) Trace of the cut-off wavelength of the guided mode as a function of inner and outer radii in nm. The white curve gives the different couples (Ro , Ri ) where λ TE 11 c = 1550 nm. (b) Dependence of the first peak location for a finite thickness as a function of the structure parameters. The metal thickness is arbitrarily fixed to 90 nm.

Fig. 3.
Fig. 3.

Zero-order transmission spectra through AAA made in silver and filled by LiNbO 3 deposited on a LiNbO 3 substrate (nsubs = 2.143, p = 300 nm,Ro = 135 nm,Ri = 65 nm). The thickness of the film, denoted by h, varies between 70 nm and 170 nm.

Fig. 4.
Fig. 4.

Dispersion curves of the first modes in the case of a single infinite silver coaxial waveguide. The interspace media is LiNbO 3 and the radius values are Ro = 135 nm,Ri = 65 nm.

Fig. 5.
Fig. 5.

Zero-ordered transmission spectrum of the AAA silver film (blue solid line). The field factor for the same annular aperture arrays (green solid line) is compared to the one of the cylindrical hole arrays (green dashed line).

Fig. 6.
Fig. 6.

The fifth root of the calculated intensity distribution in cross section of an AAA in a 120 nm silver thick filled by lithium niobate for the first λ = 1550 nm (a) and its first harmonic λ = 775 nm(b). Ro = 135 nm, Ri = 65 nm and h = 120 nm.

Fig. 7.
Fig. 7.

Amplitude distributions in the xOy plane of the three cartesian components of the electric field inside a single annular aperture at the fundamental wavelength (λ= 1550 nm). The arrows indicate the direction of the incident electric field associated with the plane wave impinging the structure from the lithium niobate side.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ = ν g niobate ν g niobate + metal
τ = cavities E metal + niobate dV cavities E niobate dV

Metrics