Abstract

We experimentally demonstrated plasmon-asssisted energy transfer (ET) between CdSe semiconductor quantum dots (QDs) self-assembled in a monolayer by using time-resolved μ-photoluminescence (PL) technique. The enhancements of PL intensity and ET efficiency were manipulated by adjusting thickness (Δ) of SiO2 coating on large Ag nanoparticles. The PL enhancement factor of the acceptor QDs and the PL intensity ratio of acceptor-to-donor reached their maxima ~ 47 and ~ 14 when Δ = 7 nm, the corresponding ET efficiency reached 86%. We also presented theoretical analysis based on the rate equation. The theoretical calculations agreed with experimental data and revealed interesting physics of multipole effect, and metal nanoparticle induced quench effect and plasmon-enhanced Förster ET.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
    [CrossRef] [PubMed]
  2. Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
    [CrossRef] [PubMed]
  3. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
    [CrossRef]
  4. M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
    [CrossRef]
  5. M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
    [CrossRef]
  6. T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.
  7. C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
    [CrossRef]
  8. T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
    [CrossRef]
  9. S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
    [CrossRef] [PubMed]
  10. S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
    [CrossRef]
  11. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
    [CrossRef] [PubMed]
  12. Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
    [CrossRef]
  13. B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
    [CrossRef] [PubMed]
  14. R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
    [CrossRef] [PubMed]
  15. K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
    [CrossRef] [PubMed]
  16. A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
    [CrossRef]
  17. J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
    [CrossRef]
  18. K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
    [CrossRef] [PubMed]
  19. J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
    [CrossRef]
  20. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [CrossRef] [PubMed]
  21. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
    [CrossRef]
  22. X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
    [CrossRef]
  23. X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
    [CrossRef]
  24. X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
    [CrossRef] [PubMed]
  25. I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
    [CrossRef] [PubMed]
  26. B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
    [CrossRef]
  27. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
    [CrossRef]
  28. Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
    [CrossRef] [PubMed]
  29. C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
    [CrossRef] [PubMed]

2010 (1)

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

2008 (6)

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

2007 (3)

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

2006 (4)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

2005 (3)

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

2004 (2)

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

2002 (3)

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

1996 (1)

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

1985 (1)

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[CrossRef]

1984 (1)

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[CrossRef]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
[CrossRef]

Basché, T.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Bawendi, M. G.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Bianucci, P.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
[CrossRef]

Bose, R.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Bracker, A. S.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Bradley, A. L.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Bryan, G. W.

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Bryant, G. W.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

Byrne, S. J.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Cao, L.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Carbone, L.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Chen, C. J.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Chen, C. W.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

Chen, W.

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

Chen, Y. F.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

Cheng, M. T.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Chou, P. T.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

Cingolani, R.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Clapp, A. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Crooker, S. A.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

Ding, S.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Doty, M. F.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Du, Y. M.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Duan, S.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

Eisler, H. J.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Eychmüller, A.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Feldmann, J.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
[CrossRef]

Fisher, B. R.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Franzl, T.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Gammon, D.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Gao, J.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Gaponik, N.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Ge, J.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Gersten, J. I.

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[CrossRef]

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[CrossRef]

Gigli, G.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Gong, H. M.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Govorov, A. O.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Gun’ko, Y. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Guo, D. L.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Han, J. B.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Han, Y. B.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Hellberg, C. S.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Hollingsworth, J. A.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

Hosoki, K.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

Hua, X. M.

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[CrossRef]

Kagan, C. R.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Kanemitsu, Y.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

Katzer, D. S.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Klar, T. A.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Klimov, V. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

Koktysh, D. S.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Komarala, V. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

Lai, C. W.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Li, Q.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Li, X.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Li, Y.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Liu, S. D.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Mamedova, N.

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

Manna, L.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Matsuda, K.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mauro, J. M.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mayers, B.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

Mazzeo, M.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

McMillan, J. F.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Medintz, I. L.

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

Mews, A.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Mruk, R.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Muller, A.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Murray, C. B.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Naik, R. R.

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Nirmal, M.

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Nitzan, A.

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[CrossRef]

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[CrossRef]

Pang, D. W.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Park, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Peng, X. N.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Piermarocchi, C.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Ponomarev, I. V.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Potapova, I.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Prehl, S.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Rakovich, Y. P.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Reinecke, T. L.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Rickey, K. M.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Rizzo, A.

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

Rogach, A. L.

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

Scheibner, M.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Sham, L. J.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Shen, X. C.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Shih, C. K.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Shimizu, K. T.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Skeini, T.

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Steel, D.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Stievater, T. H.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Stinaff, E. A.

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
[CrossRef]

Stockman, M. I.

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

Studer, J.

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

Su, X. R.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Sun, Y.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

Talapin, D. V.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Tang, B.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Tayagaki, T.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

Tretiak, S.

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

Wang, C. H.

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

Wang, Q. Q.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Wang, S.

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

Wang, X. H.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Wiley, B.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

Wong, C. W.

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Woo, W. K.

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

Wu, Y.

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Xia, Y.

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

Xiao, S.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Xie, M.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Xiong, G. G.

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

Xu, K.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Yamamoto, S.

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

Yan, J. Y.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Yu, L.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Zentel, R.

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

Zhang, W.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Zhao, X. G.

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

Zhou, H. J.

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

Zhou, L.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Zhou, Z. K.

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Zhuo, L.

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

Zou, X. W.

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

C. W. Chen, C. H. Wang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Tunable energy transfer efficiency based on the composite of mixed CdSe quantum dots and elastomeric film,” Appl. Phys. Lett. 92(5), 051906 (2008).
[CrossRef]

T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann, and N. Gaponik, “Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers,” Appl. Phys. Lett. 84(15), 2904–2906 (2004).
[CrossRef]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

X. R. Su, W. Zhang, L. Zhou, X. N. Peng, D. W. Pang, S. D. Liu, Z. K. Zhou, and Q. Q. Wang, “Multipole-plasmon-enhanced Förster energy transfer between semiconductor quantum dots via dual-resonance nanoantenna effects,” Appl. Phys. Lett. 96(4), 043106 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

J. I. Gersten and A. Nitzan, “Accelerated energy transfer between molecules near a solid particle,” Chem. Phys. Lett. 104(1), 31–37 (1984).
[CrossRef]

Chemistry (2)

B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry 14(12), 3637–3644 (2008).
[CrossRef] [PubMed]

B. Wiley, Y. Sun, B. Mayers, and Y. Xia, “Shape-controlled synthesis of metal nanostructures: the case of silver,” Chemistry 11(2), 454–463 (2005).
[CrossRef]

J. Am. Chem. Soc. (2)

I. Potapova, R. Mruk, S. Prehl, R. Zentel, T. Basché, and A. Mews, “Semiconductor nanocrystals with multifunctional polymer ligands,” J. Am. Chem. Soc. 125(2), 320–321 (2003).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, and H. Mattoussi, “Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors,” J. Am. Chem. Soc. 126(1), 301–310 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

Y. Li, A. Rizzo, M. Mazzeo, L. Carbone, L. Manna, R. Cingolani, and G. Gigli, “White organic light-emitting devices with CdSe/ZnS quantum dots as a red emitter,” J. Appl. Phys. 97(11), 113501 (2005).
[CrossRef]

J. Chem. Phys. (1)

X. M. Hua, J. I. Gersten, and A. Nitzan, “Theory of energy transfer between molecules near solid state particles,” J. Chem. Phys. 83(7), 3650–3659 (1985).
[CrossRef]

J. Coll. Inter. Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Coll. Inter. Sci. 26(1), 62–69 (1968).
[CrossRef]

J. Phys. Chem. B (1)

X. H. Wang, Y. M. Du, S. Ding, Q. Q. Wang, G. G. Xiong, M. Xie, X. C. Shen, and D. W. Pang, “Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,” J. Phys. Chem. B 110(4), 1566–1570 (2006).
[CrossRef] [PubMed]

N. J. Phys. (1)

M. Durach, A. Rusina, V. I. Klimov, and M. I. Stockman, “Nanoplasmonic renormalization and enhancement of coulomb interactions,” N. J. Phys. 10(10), 105011 (2008).
[CrossRef]

Nano Lett. (4)

S. Wang, N. Mamedova, N. A. Kotov, W. Chen, and J. Studer, “Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates,” Nano Lett. 2(8), 817–822 (2002).
[CrossRef]

R. Bose, J. F. McMillan, J. Gao, K. M. Rickey, C. J. Chen, D. V. Talapin, C. B. Murray, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dot solids at 1.5 µm for controllable Forster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Q. Q. Wang, J. B. Han, D. L. Guo, S. Xiao, Y. B. Han, H. M. Gong, and X. W. Zou, “Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region,” Nano Lett. 7(3), 723–728 (2007).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryan, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton−plasmon interaction and hybrid excitons in semiconductor−metal nanoparticle assemblies,” Nano Lett. 6(5), 984–994 (2006).
[CrossRef]

Phys. Rev. B (2)

J. Y. Yan, W. Zhang, S. Duan, X. G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77(16), 165301 (2008).
[CrossRef]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Förster energy transfer in optically excited semiconductor and metal nanoparticles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

Phys. Rev. Lett. (7)

S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, “Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials,” Phys. Rev. Lett. 89(18), 186802 (2002).
[CrossRef] [PubMed]

M. Scheibner, I. V. Ponomarev, E. A. Stinaff, M. F. Doty, A. S. Bracker, C. S. Hellberg, T. L. Reinecke, and D. Gammon, “Photoluminescence spectroscopy of the molecular biexciton in vertically stacked InAs-GaAs quantum dot pairs,” Phys. Rev. Lett. 99(19), 197402 (2007).
[CrossRef]

Q. Q. Wang, A. Muller, M. T. Cheng, H. J. Zhou, P. Bianucci, and C. K. Shih, “Coherent control of a V-type three-level system in a single quantum dot,” Phys. Rev. Lett. 95(18), 187404 (2005).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[CrossRef] [PubMed]

K. T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89(11), 117401 (2002).
[CrossRef] [PubMed]

K. Hosoki, T. Tayagaki, S. Yamamoto, K. Matsuda, and Y. Kanemitsu, “Direct and stepwise energy transfer from excitons to plasmons in close-packed metal and semiconductor nanoparticle monolayer films,” Phys. Rev. Lett. 100(20), 207404 (2008).
[CrossRef] [PubMed]

C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76(9), 1517–1520 (1996).
[CrossRef] [PubMed]

Science (1)

X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301(5634), 809–811 (2003).
[CrossRef] [PubMed]

Other (1)

T. Förster, In modern quantum chemistry: istanbul lectures. part III, Action of light and organic crystals; Sinanoglu, O., Ed.; Academic Press: New York, 1965, Part II. B.1, pp 93–137.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) TEM images Ag NPs with diameter 170 nm, and SiO2 shell thicknesses (b) 2 nm, (c) 3.5 nm, (d) 5 nm, (e) 7 nm, (f) 10 nm, and (g) 14 nm, respectively. (h) Illustration of the microstructure of a two-component QD monolayer and a single Ag/SiO2 NP. (i) Absorption spectra of Ag/SiO2 NPs, donor QDs_D with λ em = 590 nm and acceptor QDs_A λ em = 650 nm.

Fig. 2
Fig. 2

Spatial and spectral distributions of PL from a monolayer of two-component QDs thin film enhanced by large Ag/SiO2 NPs with Δ = 7 nm. (a) Conventional PL image. (b) Spectral PL image. (c) Spatial distributions of PL intensity of the donors and acceptors (d) .The spectral distributions of PL from a two-component QDs monolayer with (y = 0.0 μm) and without (y = 8.0 μm) enhancement of Ag/SiO2 NPs.

Fig. 3
Fig. 3

PL enhancement of two-component and one-component QDs monolayer as a function of thickness of SiO2 on Ag NPs. (a) PL enhancement factors of the acceptors QDs_A and donors QDs_D in two-component QDs monolayer (solid lines) versus SiO2 thickness on Ag NPs. (b) PL intensity ratio I PL,A/I PL,D of the acceptor-to-donor reached the maximum ~ 14 at Δ = 7 nm.

Fig. 4
Fig. 4

TRPL and decay rates of QDs monolayer. (a) One-exponential TRPL decay trace of the acceptors QDs_A (red) and two-exponential TRPL decay trace of the donors QDs_D (blue) in a two-component QDs monolayer enhanced by large Ag/SiO2 NPs with Δ = 7 nm. (b) Fast decay rate τf ,D and slow decay rate τs ,D of donor QDs_D and decay rate τ A of acceptor QDs_A increased as the decreasing of SiO2 thickness on Ag NPs.

Fig. 5
Fig. 5

Theoretical calculations of PL enhancements and ET rate. (a) Schematic of image dipole. (b) Calculated relation γ ET ~Δ. (c) Calculated relations PL enhancements ~Δ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ ET = γ ET 0 | 1 + δ d 0 3 / ( d 0 2 + Δ 2 ) 3 / 2 | 2
γ MNP / γ r a d 0 = ( β / Δ ) 3
f = 1 + 2 | α | 2 R MNP 6 / ( R MNP + Δ ) 6

Metrics