Abstract

Using high-intensity femtosecond laser pulses, we create a novel surface pattern that transforms regular silicon to superwicking. Due to the created surface structure, water sprints vertically uphill in a gravity defying way. Our study of the liquid motion shows that the fast self-propelling motion of water is due to a supercapillary effect from the surface structures we created. The wicking dynamics in the produced surface structure is found to follow the classical square root of time dependence.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
    [CrossRef]
  2. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [CrossRef] [PubMed]
  3. P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
    [CrossRef]
  4. K. F. Jensen, “Silicon-based microchemical systems: characteristics and applications,” MRS Bull. 31, 101–107 (2006).
    [CrossRef]
  5. D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
    [CrossRef]
  6. R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Colloid Chem. 53(9), 1466–1467 (1949).
    [CrossRef]
  7. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
    [CrossRef]
  8. J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
    [CrossRef]
  9. G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
    [CrossRef] [PubMed]
  10. K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
    [CrossRef] [PubMed]
  11. A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
    [CrossRef]
  12. Supplementary video of water running vertically uphill on the surface of femtosecond laser-structured silicon as in Fig. 3(a)–(f) of the main article.
  13. E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
    [CrossRef]
  14. L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979).
    [CrossRef]
  15. N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
    [CrossRef]
  16. M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
    [CrossRef]
  17. L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996).
    [CrossRef]
  18. J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
    [CrossRef] [PubMed]
  19. R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
    [CrossRef]
  20. L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
    [CrossRef] [PubMed]
  21. S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
    [CrossRef]
  22. A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
    [CrossRef]

2009 (1)

A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[CrossRef]

2008 (1)

K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
[CrossRef] [PubMed]

2007 (2)

P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[CrossRef]

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

2006 (2)

K. F. Jensen, “Silicon-based microchemical systems: characteristics and applications,” MRS Bull. 31, 101–107 (2006).
[CrossRef]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

2004 (3)

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[CrossRef]

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

2003 (2)

M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
[CrossRef]

A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
[CrossRef]

2001 (1)

J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
[CrossRef]

1997 (1)

S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
[CrossRef]

1996 (2)

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[CrossRef]

L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996).
[CrossRef]

1995 (1)

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

1993 (1)

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
[CrossRef]

1979 (1)

L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979).
[CrossRef]

1949 (1)

R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Colloid Chem. 53(9), 1466–1467 (1949).
[CrossRef]

1944 (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

1921 (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Abgrall, P.

P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[CrossRef]

Adler, P. M.

A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
[CrossRef]

Ajdari, A.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Aqil, S.

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Bico, J.

J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
[CrossRef]

Branebjerg, J.

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
[CrossRef]

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Cazabat, A. M.

S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
[CrossRef]

Courbin, L.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Denieul, E.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Dragila, M. I.

K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
[CrossRef] [PubMed]

Dressaire, E.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Dreyer, M. E.

M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
[CrossRef]

Dussaud, A. D.

A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
[CrossRef]

Elwenspoek, M.

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Erickson, D.

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[CrossRef]

Fisher, L. R.

L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979).
[CrossRef]

Gerdes, S.

S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
[CrossRef]

Gravesen, P.

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
[CrossRef]

Gue, A. M.

P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[CrossRef]

Haneveld, J.

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Hay, K. M.

K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
[CrossRef] [PubMed]

Jansen, H. V.

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Jensen, K. F.

K. F. Jensen, “Silicon-based microchemical systems: characteristics and applications,” MRS Bull. 31, 101–107 (2006).
[CrossRef]

Jensen, O. S.

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
[CrossRef]

Lark, P. D.

L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979).
[CrossRef]

Li, D.

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[CrossRef]

Liburdy, J.

K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
[CrossRef] [PubMed]

Lips, A.

A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
[CrossRef]

Mann, J. A.

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[CrossRef]

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

McHale, G.

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Newton, M. I.

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Perry, C. C.

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Quere, D.

J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
[CrossRef]

Rath, H. J.

M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
[CrossRef]

Romero, L.

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

Romero, L. A.

L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996).
[CrossRef]

Roper, M.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Rye, R. R.

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[CrossRef]

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

Shirtcliffe, N. J.

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Stange, M.

M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
[CrossRef]

Stone, H. A.

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Strom, G.

S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
[CrossRef]

Tas, N. R.

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Tordeux, C.

J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
[CrossRef]

van den Berg, A.

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[CrossRef]

Washburn, E. W.

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Wenzel, R. N.

R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Colloid Chem. 53(9), 1466–1467 (1949).
[CrossRef]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

Yost, F. G.

L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996).
[CrossRef]

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[CrossRef]

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

D. Erickson and D. Li, “Integrated microfluidic devices,” Anal. Chim. Acta 507(1), 11–26 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

A. Y. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Appl. Phys. Lett. 94(22), 224102 (2009).
[CrossRef]

N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “Capillary filling speed of water in nanochannels,” Appl. Phys. Lett. 85(15), 3274–3276 (2004).
[CrossRef]

Europhys. Lett. (1)

J. Bico, C. Tordeux, and D. Quere, “Rough wetting,” Europhys. Lett. 55(2), 214–220 (2001).
[CrossRef]

J. Colloid Interface Sci. (2)

K. M. Hay, M. I. Dragila, and J. Liburdy, “Theoretical model for the wetting of a rough surface,” J. Colloid Interface Sci. 325(2), 472–477 (2008).
[CrossRef] [PubMed]

L. R. Fisher and P. D. Lark, “An experimental study of the Washburn equation for liquid flow in very fine capillaries,” J. Colloid Interface Sci. 69(3), 486–492 (1979).
[CrossRef]

J. Fluid Mech. (1)

L. A. Romero and F. G. Yost, “Flow in an open channel capillary,” J. Fluid Mech. 322(-1), 109–129 (1996).
[CrossRef]

J. Micromech. Microeng. (2)

P. Gravesen, J. Branebjerg, and O. S. Jensen, “Microfluidics – a review,” J. Micromech. Microeng. 3(4), 168–182 (1993).
[CrossRef]

P. Abgrall and A. M. Gue, “Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review,” J. Micromech. Microeng. 17(5), R15–R49 (2007).
[CrossRef]

J. Phys. Colloid Chem. (1)

R. N. Wenzel, “Surface roughness and contact angle,” J. Phys. Colloid Chem. 53(9), 1466–1467 (1949).
[CrossRef]

Langmuir (3)

R. R. Rye, J. A. Mann, and F. G. Yost, “The flow of liquids in surface grooves,” Langmuir 12(2), 555–565 (1996).
[CrossRef]

S. Gerdes, A. M. Cazabat, and G. Strom, “The spreading of silicone oil droplets on a surface with parallel V-shaped grooves,” Langmuir 13(26), 7258–7264 (1997).
[CrossRef]

A. D. Dussaud, P. M. Adler, and A. Lips, “Liquid Transport in the Networked Microchannels of the Skin Surface,” Langmuir 19(18), 7341–7345 (2003).
[CrossRef]

MRS Bull. (1)

K. F. Jensen, “Silicon-based microchemical systems: characteristics and applications,” MRS Bull. 31, 101–107 (2006).
[CrossRef]

Nat. Mater. (1)

L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, and H. A. Stone, “Imbibition by polygonal spreading on microdecorated surfaces,” Nat. Mater. 6(9), 661–664 (2007).
[CrossRef] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

Phys. Fluids (1)

M. Stange, M. E. Dreyer, and H. J. Rath, “Capillary driven flow in circular cylindrical tubes,” Phys. Fluids 15(9), 2587–2601 (2003).
[CrossRef]

Phys. Rev. (1)

E. W. Washburn, “The dynamics of capillary flow,” Phys. Rev. 17(3), 273–283 (1921).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. A. Mann, L. Romero, R. R. Rye, and F. G. Yost, “Flow of simple liquids down narrow ssV grooves,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52(4), 3967–3972 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, and M. I. Newton, “Topography driven spreading,” Phys. Rev. Lett. 93(3), 036102 (2004).
[CrossRef] [PubMed]

Trans. Faraday Soc. (1)

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Other (1)

Supplementary video of water running vertically uphill on the surface of femtosecond laser-structured silicon as in Fig. 3(a)–(f) of the main article.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photograph of the treated silicon sample. (b) SEM image of parallel microgrooves. (c) and (d) Micro- and nano-structural features of the surface pattern.

Fig. 2
Fig. 2

Spreading dynamics of water on a horizontal silicon sample. (a)–(d) Water spreading along microgrooves. (e) and (f) Water spreading across microgrooves. (g) and (h) Water behavior on the untreated surface.

Fig. 3
Fig. 3

(a)–(f) Dynamics of water running uphill on a vertically standing silicon sample with vertically oriented microgrooves.

Fig. 4
Fig. 4

Plot of distance traveled by wetting front versus t 1/2 for vertical orientation of the silicon sample.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z ( t ) = ( γ r cos θ 2 μ ) 1 / 2 t 1 / 2

Metrics