Abstract

The dark enhancements of diffraction efficiency in single and multiple gratings are investigated theoretically and experimentally in phenanthrenequinone doped poly-(methyl methacrylate) materials. It is demonstrated a possibility to improve holographic characteristics of the material via the enhancement. Nearly 17-fold increment of diffraction efficiency is observed after exposure. The dependences of PQ’s concentration on the rate and increment of dark enhancement are achieved quantitatively. And the enhancement in multiplexing is presented as a simple and efficient method to improve response of the material and homogeneity of diffraction efficiency. PQ’s diffusion and enhancement process of refractive index modulation are simulated by a diffusion model for describing enhancement dynamics qualitatively and quantitatively. This study provides a significant foundation for the application of dark enhancement in holographic storage.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu and D. Psaltis, “High-density recording ini photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  2. L. Dhar, K. Curtis, M. Tackitt, M. L. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23(21), 1710–1712 (1998).
    [CrossRef]
  3. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, “Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing,” Appl. Opt. 45(29), 7661–7666 (2006).
    [CrossRef] [PubMed]
  4. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
    [CrossRef]
  5. S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
    [CrossRef]
  6. 6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
    [CrossRef]
  7. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
    [CrossRef]
  8. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
    [CrossRef]
  9. A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).
  10. A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
    [CrossRef]
  11. L. P. Krul, V. Matusevich, D. Hoff, R. Kowarschik, Y. I. Matusevich, G. V. Butovskaya, and E. A. Murashko, “Modified polymethylmethacrylate as a base for thermostable optical recording media,” Opt. Express 15(14), 8543–8549 (2007).
    [CrossRef] [PubMed]
  12. V. Matusevich, A. Matusevich, R. Kowarschik, Y. I. Matusevich, and L. P. Krul, “Holographic volume absorption grating in glass-like polymer recording material,” Opt. Express 16(3), 1552–1558 (2008).
    [CrossRef] [PubMed]
  13. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, “Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,” Opt. Lett. 33(6), 566–568 (2008).
    [CrossRef] [PubMed]
  14. H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
    [CrossRef]
  15. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005).
    [CrossRef]
  16. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002).
    [CrossRef] [PubMed]
  17. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17(20), 18279–18291 (2009).
    [CrossRef] [PubMed]
  18. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27(2), 197–203 (2010).
    [CrossRef]
  19. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17(6), 1108–1114 (2000).
    [CrossRef]
  20. C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual, “Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity,” Opt. Express 17, 18279–18291 (2009).
  21. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modeling,” J. Opt. Soc. Am. B 26(9), 1736–1745 (2009).
    [CrossRef]
  22. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Modeling,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  23. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
    [CrossRef]
  24. J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model,” J. Opt. Soc. Am. B 21(8), 1443–1451 (2004).
    [CrossRef]
  25. K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
    [CrossRef]

2010 (1)

2009 (5)

2008 (2)

2007 (1)

2006 (2)

2005 (1)

2004 (2)

J. T. Sheridan, F. T. O’Neill, and J. V. Kelly, “Holographic data storage: optimized scheduling using the nonlocal polymerization-driven diffusion model,” J. Opt. Soc. Am. B 21(8), 1443–1451 (2004).
[CrossRef]

6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[CrossRef]

2003 (1)

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

2002 (2)

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

2000 (2)

1998 (2)

1997 (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

1996 (2)

A. Pu and D. Psaltis, “High-density recording ini photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
[CrossRef] [PubMed]

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).

Babeva, T.

Barbastathis, G.

Barton, J. K.

Bartsch, E.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

Beléndez, A.

Boyd, C.

Butovskaya, G. V.

Campbell, S.

Chen, W. Z.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef]

Colvin, V. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Curtis, K.

Dhar, L.

Fernández, E.

Gallego, S.

García, C.

Gelsinger, P. J.

Gleeson, M. R.

Harris, A.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Hill, A.

Hoff, D.

Hsiao, Y. N.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

Hsiao, Y-N.

6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef]

Jiang, Y.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Kelly, J. V.

Kostuk, R. K.

Kowarschik, R.

Krul, L. P.

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

Lawrence, J. R.

Levinos, N.

Lin, S. H.

6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef]

Lion, Y.

Liu, H.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Liu, S.

Luo, Y.

Mackey, D.

Mahilny, U. V.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[CrossRef]

Marini, S.

Marmysh, D. N.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[CrossRef]

Márquez, A.

Martin, S.

Matusevich, A.

Matusevich, V.

Matusevich, Y. I.

McLeod, R. R.

Moreau, V.

Mumbru, J.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

Murashko, E. A.

Naydenova, I.

Neipp, C.

O’Neill, F. T.

Ortuno, M.

Ortuño, M.

Pascual, I.

Psaltis, D.

Pu, A.

Renotte, Y.

Schilling, M. L.

Sedunov, Yu. N.

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).

Sheridan, J. T.

Solomatine, I.

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23(16), 1310–1312 (1998).
[CrossRef]

Stankevich, A. I.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[CrossRef]

Steckman, G. J.

Sun, X.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Tackitt, M.

Toal, V.

Tolstik, A. L.

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[CrossRef]

Veniaminov, A. V.

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).

Whang, W. T.

6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25(7), 451–453 (2000).
[CrossRef]

Wilson, W.

Yu, D.

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

Zhou, G.

Appl. Opt. (3)

Appl. Phys. B (2)

U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich, and R. Kowarschik, “Holographic volume gratings in a glass-like polymer material,” Appl. Phys. B 82(2), 299–302 (2006).
[CrossRef]

H. Liu, D. Yu, Y. Jiang, and X. Sun, “Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer,” Appl. Phys. B 95(3), 513–518 (2009).
[CrossRef]

J. Appl. Phys. (1)

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81(9), 5913–5923 (1997).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. V. Veniaminov and E. Bartsch, “Diffusional enhancement of holograms: phenanthrenequinone in polycarbonate,” J. Opt. A, Pure Appl. Opt. 4(4), 387–392 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (5)

Opt. Commun. (1)

J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly(methyl methacrylate) materials,” Opt. Commun. 194(1-3), 103–108 (2001).
[CrossRef]

Opt. Eng. (2)

6Y-N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly(methyl methacrylate) hybrid materials,” Opt. Eng. 43(9), 1993–2002 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42(5), 1390–1396 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Polymer Sci. Ser. A. (1)

A. V. Veniaminov and Yu. N. Sedunov, “Diffusion of Phenanthrenequinone in Poly(methyl methacrylate): Holographic Measurements,” Polymer Sci. Ser. A. 38, 56–63 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Temporal evolution of diffraction efficiency at various exposures, t = 0 corresponds to the exposure turn-off. The symbols are experimental data and the solid lines are fitting curves by exponential function.

Fig. 2
Fig. 2

(a) Diffusion coefficient as a function of reciprocal of residual PQ’s concentrations. The line is a fit of Eq. (12). Correlation coefficient R2 = 0.8746. The inset is temporal evolution of refractive index modulation with consecutive exposure at intensity 50mW/cm2. The solid line is a fit of Eq. (7). (b) Increments of refractive index modulation as a function of residual PQ’s concentrations. The line is a fit of Eq. (13). R2 = 0.9046. The error from the experimental accuracy is 5%.

Fig. 3
Fig. 3

(a) Dark enhancement of diffraction efficiency in multiplexing gratings. (b) Cumulative grating strengths as a function of exposure. The symbols are experimental data, and the solid line is linear fitting.

Fig. 4
Fig. 4

Homogeneity improvement of diffraction efficiency in multiplexing by dark enhancement.

Fig. 5
Fig. 5

(a),(b) Spatial-temporal dynamics of PQ’s concentration, and (c),(d) corresponding refractive index modulation after recording exposure.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

PQ R d P 3 Q ,
P 3 Q + HR R i HPQ + R ,
R n 1 + R R n
HPQ + R n HPQ- n R,
[ PQ ] ( t ) t = R d + R i ,
[ PQ ] ( t ) = [ PQ ] 0 exp ( E / E τ ) ,
[ Photoproduct ] ( t ) = [ PQ ] 0 [ PQ ] ( t ) = [ PQ ] 0 [ 1 exp ( E / E τ ) ] ,
Δ n ( t ) = C 1 C 2 exp ( E / E τ )
U ( x , z , t ) t = ( D ( U ) U + D ( U ) ) ( 2 U ( x , z , t ) x 2 + 2 U ( x , z , t ) z 2 ) ,
U ( x , z , t ) x U ( x , z , t ) z ,
Δ n ( t t e ) = Δ n ( t e ) + Δ n D ( t t e ) = Δ n ( t e ) + C P Q [ P Q ] D ( t t e ) ,
D ( [ P Q ] ( t ) ) = D 0 [ 1 + exp ( C [ P Q ] ( t ) ) ]
Δ n ( t s t e ) Δ n ( t e ) C P Q [ PQ ] D ( t s t e ) = C P Q [ PQ ] 0 C P Q [ PQ ] ( t e ) .
U ( x , t e ) = U 0 2 ( 1 + V cos K x ) exp ( f k d t e ) exp ( α 0 d ) ,
P ( x , t e ) = U 0 U ( x , t e ) ,

Metrics