Abstract

We demonstrate a compact silicon photonic crystal Mach-Zehnder interferometer operating in the self-collimation regime. By tailoring the photonic band structure such as to produce self-collimated beams, it is possible to design beam splitters and mirrors and combine these to a 20 × 20 μm2 format. With transmission spectroscopy we find a pronounced unidirectional optical output, the output ratio being as high as 25 at the self-collimation wavelength. Furthermore, the self-collimated beams and the unidirectionality are clearly observed in real space using near-field and far-field optical microscopy. Interpretation of the optical data is strongly supported by different types of simulations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
    [CrossRef]
  2. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [CrossRef] [PubMed]
  3. S. P. Anderson, A. R. Schroff, and P. M. Fauchet, “Slow light with photonic crystal for on-chip optical interconnects,” Advances in Optical Technologies (2008).
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  5. M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami, “Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals,” Appl. Opt. 47(27), 5041–5050 (2008).
    [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
    [CrossRef]
  7. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
    [CrossRef]
  8. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
    [CrossRef] [PubMed]
  9. J. D. Joannopoulous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystal: Molding the flow of light (Princeton University Press, 2008).
  10. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
    [CrossRef] [PubMed]
  11. DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
    [CrossRef]
  12. X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
    [CrossRef]
  13. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).
  14. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
    [CrossRef]
  15. Finite-element frequency-domain simulations are done using the Finite Element Frequency Domain (FEFD) engine from Photon Design. http://www.photond.com/products/fefd . The FEFD engine is a 2D Maxwell solver for propagation of electromagnetic fields within an arbitrary photonic structure, which allows one to compute a steady state response for a single frequency. For further reference see [16].
  16. T. P. Felici, D. F. G. Gallagher, and L. Bolla, “Automatic Design and Optimisation of Si nanophotonics devices using Finite Element Frequency Domain Solvers,” in Proceedings of SPIE Vol. 6475, Integrated Optics: Devices, Materials, and Technologies XI(2007), pp. 64750L–1-64750L–9.
  17. R. Ramaswami, and K. N. Sivarajan, Optical networks: A pratical perspective (Morgan Kaufmann, San Francisco, 1998).
  18. L. Z. Zehnder, “Ein neuer Interferenzrefraktor,” Instrumentenkunde 11, 275–285 (1891).
  19. L. Z. Mach, “Ueber einen Interferenzrefraktor,” Instrumentenkunde 12, 89–94 (1892).
  20. J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
    [CrossRef]
  21. K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
    [CrossRef]
  22. S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
    [CrossRef] [PubMed]
  23. I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
    [CrossRef]
  24. W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
    [CrossRef]
  25. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005).
    [CrossRef]
  26. T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, in Proceedings of MEMS (Instanbul, Turkey, 2006), pp. 834–837.

2008

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
[CrossRef] [PubMed]

M. A. Mansouri-Birjandi, M. K. Moravvej-Farshi, and A. Rostami, “Ultrafast low-threshold all-optical switch implemented by arrays of ring resonators coupled to a Mach-Zehnder interferometer arm: based on 2D photonic crystals,” Appl. Opt. 47(27), 5041–5050 (2008).
[CrossRef] [PubMed]

2007

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[CrossRef] [PubMed]

2006

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

2005

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

2004

2003

X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

2002

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
[CrossRef]

1999

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

1892

L. Z. Mach, “Ueber einen Interferenzrefraktor,” Instrumentenkunde 12, 89–94 (1892).

1891

L. Z. Zehnder, “Ein neuer Interferenzrefraktor,” Instrumentenkunde 11, 275–285 (1891).

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Caro, J.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Cassagne, D.

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

Centeno, E.

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

Chen, C.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
[CrossRef] [PubMed]

Chen, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Chetrit, Y.

Choi, J. S.

Ciftcioglu, B.

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Dahlem, M. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Dang, G.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Ekinci, K. L.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005).
[CrossRef]

Fan, S.

X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Gómez -Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Gómez -Rodriguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Ibanescu, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Ippen, E. P.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Izhaky, N.

Jiang, X.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Joannopoulos, J. D.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Karouta, F.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

Kee, C.-S.

S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Kim, J.-E.

S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Kolodziejski, L. A.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

Lee, S.-G.

S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Liao, L.

Liu, A.

Loncar, M.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
[CrossRef]

Mach, L. Z.

L. Z. Mach, “Ueber einen Interferenzrefraktor,” Instrumentenkunde 12, 89–94 (1892).

Mackie, D. M.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Mansouri-Birjandi, M. A.

Martin, R.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Miao, B. L.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Moravvej-Farshi, M. K.

Murakowski, J.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
[CrossRef] [PubMed]

Newman, P. G.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Nguyen, H.

Nguyen, H. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Oh, S. S.

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Paniccia, M.

Park, H. Y.

S.-G. Lee, J. S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16(6), 4270–4277 (2008).
[CrossRef] [PubMed]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

Petrich, G. S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Prather, D. W.

Prather, DD. W.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Pustai, D. M.

Rakich, P. T.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Roeling, E. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Rogge, S.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Rong, B.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Rostami, A.

Roukes, M. L.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005).
[CrossRef]

Rubin, D.

Salemink, H. W. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

Scherer, A.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
[CrossRef]

Schneider, G. J.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
[CrossRef] [PubMed]

Sharkawy, A.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
[CrossRef] [PubMed]

Shi, S.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29(1), 50–52 (2004).
[CrossRef] [PubMed]

Soljacic, M.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Svensson, S.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

Tandon, S.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Taysing-Lara, M.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

van der Drift, E. W. J. M.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

van der Heijden, R. W.

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

Vassor d'Yerville, M. L.

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

Venkataraman, S.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vynck, K.

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

Witzens, J.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
[CrossRef]

Yao, P.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Yu, X.

X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

Zehnder, L. Z.

L. Z. Zehnder, “Ein neuer Interferenzrefraktor,” Instrumentenkunde 11, 275–285 (1891).

Zhang, J.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Zhao, D.

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Zhou, W.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett

D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett . 90, 231114–1–231114–3 (2007)
[CrossRef]

Appl. Phys. Lett.

X. Yu and S. Fan, “Bends and splitters for selft-collimated beams in photonic crystals,” Appl. Phys. Lett. 83(16), 3251–3253 (2003).
[CrossRef]

S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line defect induced bending and splitting of self-collimated beams in two-dimentional photonic crystals,” Appl. Phys. Lett. 87, 118106 (2005).

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74(9), 1212–1215 (1999).
[CrossRef]

J. Caro, E. M. Roeling, B. Rong, H. M. Nguyen, E. W. J. M. van der Drift, S. Rogge, F. Karouta, R. W. van der Heijden, and H. W. M. Salemink, “Transmission measurement of the photonic band gap of GaN photonic crystal slabs,” Appl. Phys. Lett. 93(5), 051117–051119 (2008).
[CrossRef]

K. Vynck, E. Centeno, M. L. Vassor d'Yerville, and D. Cassagne, “Efficient light coupling from integrated single-mode waveguides to supercollimating photonic crystals on silicon-on-insulator platforms,” Appl. Phys. Lett. 92(10), 103128–1, 103128–3 (2008).
[CrossRef]

IEEE J. Sel. Quantum Electron.

J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Quantum Electron. 8(6), 1246–1257 (2002).
[CrossRef]

Instrumentenkunde

L. Z. Zehnder, “Ein neuer Interferenzrefraktor,” Instrumentenkunde 11, 275–285 (1891).

L. Z. Mach, “Ueber einen Interferenzrefraktor,” Instrumentenkunde 12, 89–94 (1892).

J. Phys. D Appl. Phys.

DD. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D Appl. Phys. 40(9), 2635–2651 (2007).
[CrossRef]

Nat. Mater.

P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačić, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5(2), 93–96 (2006).
[CrossRef] [PubMed]

Nat. Photonics

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
[CrossRef]

Nature

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76(6), 061101–1, 061101–061112 (2005).
[CrossRef]

I. Horcas, R. Fernández, J. M. Gómez -Rodriguez, J. Colchero, J. Gómez -Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705–1, 013705–013708 (2007).
[CrossRef]

Solid-State Electron.

W. Zhou, D. M. Mackie, M. Taysing-Lara, G. Dang, P. G. Newman, and S. Svensson, “Novel reconfigurable semiconductor photonic crystal-MEMS device,” Solid-State Electron. 50(6), 908–913 (2006).
[CrossRef]

Other

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, in Proceedings of MEMS (Instanbul, Turkey, 2006), pp. 834–837.

S. P. Anderson, A. R. Schroff, and P. M. Fauchet, “Slow light with photonic crystal for on-chip optical interconnects,” Advances in Optical Technologies (2008).

J. D. Joannopoulous, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystal: Molding the flow of light (Princeton University Press, 2008).

Finite-element frequency-domain simulations are done using the Finite Element Frequency Domain (FEFD) engine from Photon Design. http://www.photond.com/products/fefd . The FEFD engine is a 2D Maxwell solver for propagation of electromagnetic fields within an arbitrary photonic structure, which allows one to compute a steady state response for a single frequency. For further reference see [16].

T. P. Felici, D. F. G. Gallagher, and L. Bolla, “Automatic Design and Optimisation of Si nanophotonics devices using Finite Element Frequency Domain Solvers,” in Proceedings of SPIE Vol. 6475, Integrated Optics: Devices, Materials, and Technologies XI(2007), pp. 64750L–1-64750L–9.

R. Ramaswami, and K. N. Sivarajan, Optical networks: A pratical perspective (Morgan Kaufmann, San Francisco, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Equi-frequency contours (EFCs) in the first two Brillouin zones for the lowest TE photonic band of the square lattice PhC. The colours indicate regions between EFCs, each characterized by a normalized frequency a / λ . In the blue and green regions the dispersion is isotropic, i.e. here the TE modes of the PhC undergo classic diffraction, as in a homogeneous isotropic medium. The blow-up of the region at the M-point shows highly anisotropic yellow, orange and red regions ( a / λ between 0.1813 and 0.2493). The flat section labeled with a / λ c = 0.2267 is responsible for the self-collimated beams excited at λ c = 1.50 μm. The dashed red circle is the cross section of the light cone for SiO2 with the equi-frequency plane at a / λ c = 0.2267. (b) Simulations of the propagation of TE modes through the PhC between collinear input and output waveguides, for a / λ = 0.136, a / λ c = 0.2267 and a / λ = 0.236, respectively.

Fig. 2
Fig. 2

Design of the PhC MZI. BS1 and BS2 are beam splitters, defined by a line defect. M1 and M2 are mirrors, defined by air regions. IN1, IN2 and OUT1, OUT2 are input and output waveguides, respectively, for light coupling. White arrows indicate the direction of light propagation. Inset 1 shows the first Brillouin zone (BZ), with in green the irreducible BZ, which defines the symmetry directions ΓM and ΓX in the PhC. Inset 2 is a 2D FEFD simulation result at the collimation wavelength, showing the unidirectional output behaviour of the PhC MZI. Details of the design are given in the text.

Fig. 3
Fig. 3

SEM image of the PhC MZI, demonstrating accurate realization of the design. All structures (PhC holes, beam splitters, mirrors and waveguides) are etched in a single etching step. The inset is an SEM image of a beam splitter, featuring smooth circular holes. The hole radius for the regular PhC is r 105 nm, while for the line defect it is r B S 155 nm, consistent with the design. A narrow vein of a beam splitter is highlighted in the white rectangle.

Fig. 4
Fig. 4

Experimental and simulated transmission spectra of the MZI and simulated out-of plane loss into the air cladding of the MZI (see legend in panel). Both the experimental and the simulated transmission spectra have been normalized with ridge waveguides. Inset shows the unsmoothed data with the Fabry-Perot fringes.

Fig. 5
Fig. 5

(a), (b) NSOM images of the MZI for on-collimation operation (λ = 1.51 μm) and off-collimation operation (λ = 1.62 μm), respectively. The unidirectional output behaviour is clearly seen in the on-collimation case, but is lost in the off-collimation case.

Fig. 6
Fig. 6

(a), (b) Top-view optical microscopic images of the MZI for on-collimation operation ( λ c = 1.50 μm) and off-collimation operation (λ = 1.62 μm), respectively, with a SEM image of the MZI superimposed. As seen from the number of hot spots, out-of plane losses are much weaker for the on-collimation case than for the off-collimation case.

Metrics