Abstract

A scheme to realize all-optical Boolean logic functions AND, XOR and NOT using semiconductor optical amplifiers with quantum-dot active layers is studied. nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations scheme. Results show with QD excited state and wetting layer serving as dual-reservoir of carriers, as well as the ultra fast carrier relaxation of the QD device, this scheme is suitable for high speed Boolean logic operations. Logic operation can be carried out up to speed of 250 Gb/s.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers

S. Ma, H. Sun, Z. Chen, and N. K. Dutta
Opt. Express 17(21) 18469-18477 (2009)

All-optical latches based on two-photon absorption in semiconductor optical amplifiers

Wenbo Li, Shaozhen Ma, Hongyu Hu, and Niloy K. Dutta
J. Opt. Soc. Am. B 29(9) 2603-2609 (2012)

Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer

Jing Xu, Xinliang Zhang, Deming Liu, and Dexiu Huang
Opt. Express 14(22) 10708-10714 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, (2002).
  2. J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
    [Crossref]
  3. Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
    [Crossref]
  4. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
    [Crossref]
  5. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
    [Crossref]
  6. K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
    [Crossref]
  7. Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
    [Crossref]
  8. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
    [Crossref]
  9. T. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40(11), 1527–1539 (2004).
    [Crossref]
  10. P. Reithmaier, and G. Eisenstein, “Semiconductor optical amplifiers with nanostructured gain material,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuN1. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2008-FTuN1
  11. P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).
  12. P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
    [Crossref]
  13. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
    [Crossref]
  14. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
    [Crossref]
  15. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
    [Crossref]
  16. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
    [Crossref]
  17. T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [Crossref]
  18. J. Kim and S. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 18, 2538 (2006).
  19. T. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083 (2003).
    [Crossref]
  20. S. Ma, H. Sun, Z. Chen, and N. K. Dutta, “High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers,” Opt. Express 17(21), 18469–18477 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18469 .
    [Crossref]
  21. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
    [Crossref]
  22. H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
    [Crossref]
  23. J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
    [Crossref]
  24. O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
    [Crossref]
  25. A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
    [Crossref]

2009 (2)

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

S. Ma, H. Sun, Z. Chen, and N. K. Dutta, “High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers,” Opt. Express 17(21), 18469–18477 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18469 .
[Crossref]

2008 (1)

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

2007 (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

2006 (3)

J. Kim and S. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 18, 2538 (2006).

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

2005 (3)

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

2004 (3)

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

T. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40(11), 1527–1539 (2004).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

2003 (1)

T. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083 (2003).
[Crossref]

2002 (1)

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

2001 (2)

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

2000 (4)

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

1999 (1)

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

1998 (1)

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Avramopoulos, H.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Berg, T.

T. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40(11), 1527–1539 (2004).
[Crossref]

T. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083 (2003).
[Crossref]

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Bimberg, D.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Bintjas, C.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Bischoff, S.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Borri, P.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Burkhard, H.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Byun, Y.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Chan, C.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chan, K.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chen, H.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Chen, L.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Chen, Z.

Chuang, S.

J. Kim and S. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 18, 2538 (2006).

Dall’Ara, R.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

de Waardt, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Dong, H.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Dorren, H. J. S.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Dutta, N. K.

S. Ma, H. Sun, Z. Chen, and N. K. Dutta, “High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers,” Opt. Express 17(21), 18469–18477 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18469 .
[Crossref]

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Ezra, Y. B.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Fiore, A.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Galbraith, I.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Guekos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Hansmann, S.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Haridim, M.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Hatziefremidis, A.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Heinrichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Heirichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

Houbavlis, T.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Ishikawa, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Jaques, J.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Jhon, Y.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Ju, H.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Kalyvas, M.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Khoe, G. D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Kim, J.

J. Kim and S. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 18, 2538 (2006).

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Kim, S.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Kuwatsuka, H.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

Laemmlin, M.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Langbein, W.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Ledentsov, N.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Lee, S.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Lembrikov, B. I.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

Lenstra, D.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Leuthold, J.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Li, L.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Li, Z.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Liu, Y.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Ma, S.

Magnusdottir, I.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Mao, M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

Mao, M. H.

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Mork, J.

T. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40(11), 1527–1539 (2004).
[Crossref]

T. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083 (2003).
[Crossref]

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

Mukai, K.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Nakata, Y.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Nilsson, H. H.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

O’Reilly, E.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Occhi, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Ohtsubo, K.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Patriarche, G.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Piccirilli, A. B.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Qasaimeh, O.

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

Ridha, P.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Rossetti, M.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Schares, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Shoji, H.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Simoyama, T.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

Stathopoulos, T.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Sugawara, M.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Sun, H.

S. Ma, H. Sun, Z. Chen, and N. K. Dutta, “High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers,” Opt. Express 17(21), 18469–18477 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18469 .
[Crossref]

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Theophilopoulos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

Tong, F.

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

Uskov, A.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Vazquez, J. M.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Wada, O.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

Wang, Q.

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Woo, D.

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Yokoyama, N.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

Zhang, J.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

Zhang, S.

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

Zhu, G.

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Zoiros, K.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Appl. Phys. Lett. (2)

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for non-degenerate four-wave mixing in quantum dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[Crossref]

T. Berg and J. Mork, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083 (2003).
[Crossref]

Electron. Lett. (3)

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[Crossref]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulos, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650 (1999).
[Crossref]

Z. Li, Y. Liu, S. Zhang, H. Ju, H. de Waardt, G. D. Khoe, H. J. S. Dorren, and D. Lenstra, “All-optical logic gates using semiconductor optical amplifier assisted by optical filter,” Electron. Lett. 41(25), 1397 (2005).
[Crossref]

IEEE J. Quantum Electron. (6)

T. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 40(11), 1527–1539 (2004).
[Crossref]

P. Borri, W. Langbein, J. M. Hvam, F. Heinrichsdorff, M. H. Mao, and D. Bimberg, “Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers,” IEEE J. Quantum Electron. 12, 594 (2000).

Q. Wang, G. Zhu, H. Chen, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme,” IEEE J. Quantum Electron. 40(6), 703–710 (2004).
[Crossref]

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[Crossref]

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[Crossref]

J. Kim and S. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 18, 2538 (2006).

IEEE Photon. Technol. Lett. (5)

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Application of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multi-wavelength channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[Crossref]

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[Crossref]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulos, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20Gb/s all optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[Crossref]

K. Chan, C. Chan, L. Chen, and F. Tong, “Demonstration of 20 Gb/s all-optical XOR gate by four-wave mixing in semiconductor optical amplifier with RZ-DPSK modulated inputs,” IEEE Photon. Technol. Lett. 16(3), 897–899 (2004).
[Crossref]

J. Kim, Y. Jhon, Y. Byun, S. Lee, D. Woo, and S. Kim, “All-optical XOR gate using semiconductor optical amplifiers without additional input beam,” IEEE Photon. Technol. Lett. 14(10), 1436–1438 (2002).
[Crossref]

Microw. Opt. Technol. Lett. (1)

H. Dong, H. Sun, Q. Wang, N. K. Dutta, and J. Jaques, “All-optical logic AND operation at 80 Gb/s using semiconductor optical amplifier based on the Mach-Zehnder interferometer,” Microw. Opt. Technol. Lett. 48(8), 1672–1675 (2006).
[Crossref]

Opt. Commun. (1)

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (2)

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[Crossref]

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[Crossref]

Phys. Stat. Solidi. B (1)

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Stat. Solidi. B 224(2), 419–423 (2001).
[Crossref]

Proc. IEEE (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-dot semiconductor optical amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Other (2)

P. Reithmaier, and G. Eisenstein, “Semiconductor optical amplifiers with nanostructured gain material,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FTuN1. http://www.opticsinfobase.org/abstract.cfm?URI=FiO-2008-FTuN1

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of QD states and carrier transitions of InAs/GaAs QD-SOA.

Fig. 2
Fig. 2

Schematic of QD-SOA Mach-Zehnder interferometer. BPF: bandpass filter

Fig. 3
Fig. 3

Simulation results of XOR gates operating at different bit-rates: (a) 40 Gb/s, (b) 250 Gb/s, inset is the simulated eye-diagram of each output wave form. J=1.8 kA/cm2, pulse width=2.5ps, pulse energy=0.5pJ.

Fig. 4
Fig. 4

Simulated result of AND gate and NOT gate operating at 250 Gb/s. J=1.8 kA/cm2, pulse width=2.5ps, pulse energy=0.5pJ.

Fig. 5
Fig. 5

The dependence of quality factor Q’s on pulse width and injected current density, single pulse energy is 0.5 pJ. (a): 250 Gb/s XOR operation (b): 160 Gb/s operation

Fig. 6
Fig. 6

Calculated Q factor dependence on (a): single pulse energy (b): ES to GS transition lifetime operation bit-rate is 250 Gb/s and current density J=1.8 kA/cm2

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d w d t = I e V N w m w τ w r w τ w e ( 1 h ) + N e s m N w m h τ e w ( 1 w )
d h d t = h τ e s r + N w m N e s m w τ w e ( 1 h ) h τ e w ( 1 w ) + N g s m N e s m f τ g e ( 1 h ) h τ e g ( 1 f )
d f d t = f τ g s r f τ g e ( 1 h ) + N e s m N g s m h τ e g ( 1 f ) Γ d A d a ( 2 f 1 ) 1 N g s m S ( t ) ω
g ( t ) = a ( N N t ) 1 + ( ε C H + ε S H B ) S ( t )
ϕ ( t ) = 1 2 [ α G l ( t ) + α C H Δ G C H ( t ) ]
P o u t ( t ) = P c b ( t ) 4 [ G 1 ( t ) + G 2 ( t ) 2 G 1 ( t ) G 2 ( t ) ) cos ( ϕ 1 ( t ) ϕ 2 ( t ) ) ]

Metrics