Abstract

We present a design of a slot waveguide in which the core layer is orthogonally slotted to form a rectangular sub-core. While the overall guiding and coupling efficiency remains the same as a conventional slot waveguide, the field confinement is enhanced and appears two-dimensional. The waveguiding is controllable by selecting the intermediate index as well as various geometrical parameters. In addition, by changing different variables, the linear/nonlinear dispersion and birefringence can be tailored with extended ranges. Constant-dispersion points, where the dispersion is insensitive to size changes, are also demonstrated.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  2. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  3. N. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett. 32(10), 1250–1252 (2007).
    [CrossRef] [PubMed]
  4. L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7095 .
    [CrossRef] [PubMed]
  5. P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-11-9282 .
    [CrossRef] [PubMed]
  6. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-8-74977 .
    [CrossRef] [PubMed]
  7. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
    [CrossRef] [PubMed]
  8. A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
    [CrossRef]
  9. K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
    [CrossRef]
  10. J. V. Galan, P. Sanchis, J. Garcia, J. Blasco, A. Martinez, and J. Martí, “Study of asymmetric silicon cross-slot waveguides for polarization diversity schemes,” Appl. Opt. 48(14), 2693–2696 (2009).
    [CrossRef] [PubMed]
  11. H. Zhou, W. Wang, J. Yang, M. Wang, and X. Jiang, “Intersected slot waveguide for dual polarized mode low-index confinement and its polarization conversion,” Group IV Photonics, Sorrento, 5th IEEE International Conference, Italy, WP19, 128–130 (2008).
  12. Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-16-10427 .
    [CrossRef] [PubMed]
  13. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-24-20142 .
    [CrossRef] [PubMed]
  14. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  15. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  16. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009).
    [CrossRef]
  17. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7519 .
    [CrossRef] [PubMed]
  18. P. S. Nayar, “Refractive index control of silicon nitride films prepared by radio-frequency reactive sputtering,” J. Vac. Sci. Technol. A 20(6), 2137–2139 (2002).
    [CrossRef]
  19. L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006).
    [CrossRef] [PubMed]
  20. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-10-4357 .
    [CrossRef] [PubMed]
  21. X. Liu, W. M. J. Green, X. Chen, I. W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008).
    [CrossRef] [PubMed]
  22. E. D. Palik, Handbook of optical Constants of Solid (Academic, 1998).

2009 (5)

2008 (2)

2007 (4)

2006 (3)

2004 (3)

2002 (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

P. S. Nayar, “Refractive index control of silicon nitride films prepared by radio-frequency reactive sputtering,” J. Vac. Sci. Technol. A 20(6), 2137–2139 (2002).
[CrossRef]

2000 (1)

A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
[CrossRef]

Abushagur, M. A. G.

Agrawal, G. P.

Almeida, V. R.

Barrios, C. A.

Bartal, G.

Beausoleil, R. G.

Blasco, J.

Casquel, R.

Challenger, W.

K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Chen, L.

Chen, X.

Choi, H.

Cui, Y.

Dadap, J. I.

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dell’Olio, F.

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Feng, N. N.

Foster, M. A.

Gaeta, A. L.

Galan, J. V.

Garcia, J.

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Green, W. M. J.

Griol, A.

Gylfason, K. B.

Hainberger, R.

Harris, J. S.

He, S.

Hesselink, L.

Hochman, A.

A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
[CrossRef]

Holgado, M.

Hsieh, I. W.

Kimerling, L. C.

Leviatan, Y.

A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Lin, Q.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Lipson, M.

Liu, X.

Lu, Z.

Manolatou, C.

Martí, J.

Martinez, A.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Michel, J.

Muellner, P.

Nam, S.

Nayar, P. S.

P. S. Nayar, “Refractive index control of silicon nitride films prepared by radio-frequency reactive sputtering,” J. Vac. Sci. Technol. A 20(6), 2137–2139 (2002).
[CrossRef]

Osgood, R. M.

Paneah, P.

A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
[CrossRef]

Panepucci, R. R.

Passaro, V. M. N.

Peng, C.

K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Pile, D. F. P.

Rao, Z.

Sánchez, B.

Sanchis, P.

Schmidt, B. S.

Sendur, K.

K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

Shakya, J.

Sharping, J. E.

Sohlström, H.

Sun, R.

Turner, A. C.

Vlasov, Y. A.

Wellenzohn, M.

Willner, A. E.

Xiao-Li, Y.

Xu, Q.

Yang, R.

Yin, L.

Yue, Y.

Zhang, L.

Zhang, X.

Appl. Opt. (1)

J. Appl. Phys. (2)

A. Hochman, P. Paneah, and Y. Leviatan, “Interaction between a waveguide-fed narrow slot and a nearby conducting strip in millimeter-wave scanning microscopy,” J. Appl. Phys. 88(10), 5987–5992 (2000).
[CrossRef]

K. Sendur, W. Challenger, and C. Peng, “Ridge waveguide as a near-field aperture for high density data storage,” J. Appl. Phys. 96(5), 2743–2752 (2004).
[CrossRef]

J. Vac. Sci. Technol. A (1)

P. S. Nayar, “Refractive index control of silicon nitride films prepared by radio-frequency reactive sputtering,” J. Vac. Sci. Technol. A 20(6), 2137–2139 (2002).
[CrossRef]

Opt. Express (7)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-10-4357 .
[CrossRef] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express 15(8), 4977–4993 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-8-74977 .
[CrossRef] [PubMed]

Z. Rao, L. Hesselink, and J. S. Harris, “High transmission through ridge nano-apertures on Vertical-Cavity Surface-Emitting Lasers,” Opt. Express 15(16), 10427–10438 (2007), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-15-16-10427 .
[CrossRef] [PubMed]

R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16(24), 20142–20148 (2008), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-16-24-20142 .
[CrossRef] [PubMed]

L. Zhang, Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Highly dispersive slot waveguides,” Opt. Express 17(9), 7095–7101 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7095 .
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17(9), 7519–7524 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-9-7519 .
[CrossRef] [PubMed]

P. Muellner, M. Wellenzohn, and R. Hainberger, “Nonlinearity of optimized silicon photonic slot waveguides,” Opt. Express 17(11), 9282–9287 (2009), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-17-11-9282 .
[CrossRef] [PubMed]

Opt. Lett. (8)

X. Liu, W. M. J. Green, X. Chen, I. W. Hsieh, J. I. Dadap, Y. A. Vlasov, and R. M. Osgood., “Conformal dielectric overlayers for engineering dispersion and effective nonlinearity of silicon nanophotonic wires,” Opt. Lett. 33(24), 2889–2891 (2008).
[CrossRef] [PubMed]

Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett. 34(1), 16–18 (2009).
[CrossRef]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007).
[CrossRef] [PubMed]

N. N. Feng, R. Sun, L. C. Kimerling, and J. Michel, “Lossless strip-to-slot waveguide transformer,” Opt. Lett. 32(10), 1250–1252 (2007).
[CrossRef] [PubMed]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004).
[CrossRef] [PubMed]

L. Yin, Q. Lin, and G. P. Agrawal, “Dispersion tailoring and soliton propagation in silicon waveguides,” Opt. Lett. 31(9), 1295–1297 (2006).
[CrossRef] [PubMed]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (2)

E. D. Palik, Handbook of optical Constants of Solid (Academic, 1998).

H. Zhou, W. Wang, J. Yang, M. Wang, and X. Jiang, “Intersected slot waveguide for dual polarized mode low-index confinement and its polarization conversion,” Group IV Photonics, Sorrento, 5th IEEE International Conference, Italy, WP19, 128–130 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of the slot waveguide (a) and the dual slot waveguide (b). In the text, the geometric terms, width and thickness, are respectively referred to the lateral and vertical lengths of the layers described in these schematics.

Fig. 2
Fig. 2

Intensity distribution of the slot waveguide (a) and the dual slot waveguide (b); Intensity distribution in surf format of the slot waveguide (c) and the dual slot waveguide (d). The sizes are chosen waveguide width 375nm, slot thickness 21nm, and sub-core width 50nm.

Fig. 3
Fig. 3

Cross-sectional curve of the intensity distribution in Fig. 2 along the center axis of the slot of the slot waveguide (a) and the dual slot waveguide (b); Cross-sectional curve of the intensity distribution in Fig. 2 across the slot of the slot waveguide (c) and the dual slot waveguide (d).

Fig. 4
Fig. 4

a) Average peak intensity and peak height normalized to the peak of the slot waveguide as a function of the slot refractive index; b) FWHM of the slot waveguide (dot curve) and FWHM of the dual slot waveguide (square curve) as a function of the slot refractive index. The sizes chosen are waveguide width 375nm, slot thickness 21nm, and sub-core width 50nm.

Fig. 5
Fig. 5

(a) Average intensity in the sub-core normalized to average intensity in the slot as a function of sub-core width for fixed sub-core thickness 21nm; (b) Power ratio between light in the sub-core and light in the slot.

Fig. 6
Fig. 6

(a) Group velocity dispersion; (b) Nonlinear coefficient dispersion; (c) Birefringence dispersion.

Fig. 7
Fig. 7

Dispersions of dual slot waveguides with (a) fixed slot thickness 21nm, (b) fixed slot thickness 50nm, and (c) fixed sub-core width 60nm.

Metrics