Abstract

Spatially resolved photocurrent-spectroscopy and spatially resolved current-voltage characteristics are introduced as new methods to characterize solar cells. A combination of these two methods is shown to localize and characterize deficiencies and structural damages in processed solar cells with high spatial resolution. The local external and internal quantum efficiencies as well as the local characteristic parameters of the p-n junction like the short circuit current, the saturation current, the ideality factor, and the optically induced shunt resistance can be determined quantitatively. Both, a slab of a damaged and an undamaged (GaIn)(NAs) concentrator solar cell, are used as test structures. Upon these test structures domains with a high concentration of impurities in the crystal structure and structural imperfections in the upper contact region are identified and analyzed. Additional numerical simulations prove the reliability and show limits of the methods.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Würfel, Physics of Solar Cells (Wiley-VCH, 2005).
  2. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  3. M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
    [CrossRef]
  4. A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
    [CrossRef]
  5. D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
    [CrossRef]
  6. S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
    [CrossRef]
  7. D. J. Friedmann, J. F. Geisz, S. R. Kurtz, A. G. Norman, and Y. C. M. Yeh, “Hydrazine N source for growth of GaInNAs for solar cells,” in Photovoltaics for the 21st century, V. K. Kapur, R. D. McConnell, D. Carlson, G. P. Caesar, and A. Rohatgi ed. (The Electrochemical Society, 1999).
  8. A. Luque, and V. Andreev ed., Concentrator Photovoltaics (Springer Berlin, Heidelberg, New York, 2007).
  9. P. Horowitz, and W. Hill, The art of electronics (Cambridge University Press, 1989).
  10. M. Johnson, Photodetection and Measurement – maximizing performance in optical systems (McGraw – Hill, 2003), Chap. 5.7.
  11. C. H. Bamford, and C. F. H. Tipper, Modern methods in kinetics (Elsevier Scientific Publishing, 1983).
  12. J. R. Lakowicz ed., Topics in Flourescence Spectroscopy (Plenum Press, New York, 1994).
  13. J. F. Rabek ed., Progress in photochemistry and photophysics, Volume VI (CRC Press, 1992).
  14. K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
    [CrossRef]
  15. Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
    [CrossRef]
  16. K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
    [CrossRef]
  17. K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
    [CrossRef]
  18. K. Volz, W. Stolz, J. Teubert, P. J. Klar, W. Heimbrodt, F. Dimroth, C. Baur, and A. W. Bett, “Doping, electrical properties and solar cell application of GaInNAs,” in Dilute III/V Nitride Semiconductors and Material Systems, A. Erol, ed. (Springer Berlin, Heidelberg, New York, 2008), pp. 369–404.
  19. O. Madelung, U. Rössler, and M. Schulz ed., Landolt-Börnstein – Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter, Volume 41: Semiconductors, Subvolume A1b: Group IV Elements, IV–IV and III–V Compounds. Part b – Electronic, Transport, Optical and other Properties (Springer Berlin, Heidelberg, New York, 2002).
  20. M. R. Brozel, and G. E. Stillman ed., Properties of Gallium Arsenide (Inspec, 1996).
  21. S. Adachi ed., Properties of Aluminium Gallium Arsenide (Inspec, 1993).
  22. Ioffe Physico-Technical Institute, “New Semiconductor Materials. Characteristics and Properties” (Ioffe Physico-Technical Institute, 2009). http://www.ioffe.ru/SVA/NSM/ .
  23. R. E. Bolz, and G. L. Tuve, CRC handbook of tables for applied engineering science (CRC Press, 1973).
  24. A. S. Tanenbaum, Computer Networks (Prentice Hall, 2003).
  25. H. Gumm, and M. Sommer, Einführung in die Informatik (Oldenbourg, 2006).

2009 (1)

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

2008 (1)

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

2006 (1)

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

2005 (1)

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

2004 (1)

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

1999 (1)

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

1998 (2)

M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
[CrossRef]

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

Allerman, A. A.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

Banas, J. J.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

Baur, C.

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Bett, A. W.

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Boyeaux, J. P.

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Breitenstein, O.

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Capizzi, M.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Chatterjee, S.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Dimroth, F.

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Friedmann, D. J.

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

Gee, J. M.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

Geisz, J. F.

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

Hammons, B. E.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

Hantke, K.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Heber, J. D.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Höhnsdorf, F.

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

Ji, Y.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Jones, E. D.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

Kaminski, A.

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Klar, P. J.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Koch, J.

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

Kunert, B.

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Kurtz, S. R.

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

Lackner, D.

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Laugier, A.

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Möller, H. J.

M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
[CrossRef]

Németh, I.

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

Ni, H. Q.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Niu, Z. C.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Olson, J. M.

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

Polimeni, A.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Rakotoniaina, P.

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Rinio, M.

M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
[CrossRef]

Rühle, W. W.

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Stolz, W.

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Sun, B. Q.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Sun, Z.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Volz, K.

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Werner, M.

M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
[CrossRef]

Xu, Z. Y.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Yang, X. D.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Zhang, S. Y.

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, “InGaAsN solar cells with 1.0 eV band gap, lattice matched to GaAs,” Appl. Phys. Lett. 74(5), 729–731 (1999).
[CrossRef]

K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Rühle, A. Polimeni, and M. Capizzi, “Carrier relaxation dynamics in annealed and hydrogenated (GaIn)(NAs)/GaAs quantum wells,” Appl. Phys. Lett. 87(25), 252111 (2005).
[CrossRef]

Z. Sun, Z. Y. Xu, X. D. Yang, B. Q. Sun, Y. Ji, S. Y. Zhang, H. Q. Ni, and Z. C. Niu, “Nonradiative recombination effect on photoluminescence decay dynamics in GaInNAs/GaAs quantum wells,” Appl. Phys. Lett. 88(1), 011912 (2006).
[CrossRef]

J. Cryst. Growth (3)

K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, and W. Stolz, “MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors,” J. Cryst. Growth 311(8), 2418–2426 (2009).
[CrossRef]

K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, F. Dimroth, and A. W. Bett, “Optimization of Annealing Conditions of (GaIn)(NAs) for Solar Cell Applications,” J. Cryst. Growth 310(7–9), 2222–2228 (2008).
[CrossRef]

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, and J. M. Olson, “1-eV solar cells with GaInNAs active layer,” J. Cryst. Growth 195(1-4), 409–415 (1998).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Kaminski, O. Breitenstein, J. P. Boyeaux, P. Rakotoniaina, and A. Laugier, “Light beam induced current and infrared thermography studies of multicrystalline silicon solar cells,” J. Phys. Condens. Matter 16(2), S9–S18 (2004).
[CrossRef]

Solid State Phenomena (1)

M. Rinio, H. J. Möller, and M. Werner, “LBIC Investigations of the Lifetime Degradation by Extended Defects in Multicrystalline Solar Silicon,” Solid State Phenomena 63–64, 115–122 (1998).
[CrossRef]

Other (17)

P. Würfel, Physics of Solar Cells (Wiley-VCH, 2005).

J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).

K. Volz, W. Stolz, J. Teubert, P. J. Klar, W. Heimbrodt, F. Dimroth, C. Baur, and A. W. Bett, “Doping, electrical properties and solar cell application of GaInNAs,” in Dilute III/V Nitride Semiconductors and Material Systems, A. Erol, ed. (Springer Berlin, Heidelberg, New York, 2008), pp. 369–404.

O. Madelung, U. Rössler, and M. Schulz ed., Landolt-Börnstein – Numerical Data and Functional Relationships in Science and Technology, Group III: Condensed Matter, Volume 41: Semiconductors, Subvolume A1b: Group IV Elements, IV–IV and III–V Compounds. Part b – Electronic, Transport, Optical and other Properties (Springer Berlin, Heidelberg, New York, 2002).

M. R. Brozel, and G. E. Stillman ed., Properties of Gallium Arsenide (Inspec, 1996).

S. Adachi ed., Properties of Aluminium Gallium Arsenide (Inspec, 1993).

Ioffe Physico-Technical Institute, “New Semiconductor Materials. Characteristics and Properties” (Ioffe Physico-Technical Institute, 2009). http://www.ioffe.ru/SVA/NSM/ .

R. E. Bolz, and G. L. Tuve, CRC handbook of tables for applied engineering science (CRC Press, 1973).

A. S. Tanenbaum, Computer Networks (Prentice Hall, 2003).

H. Gumm, and M. Sommer, Einführung in die Informatik (Oldenbourg, 2006).

D. J. Friedmann, J. F. Geisz, S. R. Kurtz, A. G. Norman, and Y. C. M. Yeh, “Hydrazine N source for growth of GaInNAs for solar cells,” in Photovoltaics for the 21st century, V. K. Kapur, R. D. McConnell, D. Carlson, G. P. Caesar, and A. Rohatgi ed. (The Electrochemical Society, 1999).

A. Luque, and V. Andreev ed., Concentrator Photovoltaics (Springer Berlin, Heidelberg, New York, 2007).

P. Horowitz, and W. Hill, The art of electronics (Cambridge University Press, 1989).

M. Johnson, Photodetection and Measurement – maximizing performance in optical systems (McGraw – Hill, 2003), Chap. 5.7.

C. H. Bamford, and C. F. H. Tipper, Modern methods in kinetics (Elsevier Scientific Publishing, 1983).

J. R. Lakowicz ed., Topics in Flourescence Spectroscopy (Plenum Press, New York, 1994).

J. F. Rabek ed., Progress in photochemistry and photophysics, Volume VI (CRC Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photograph of the damaged solar cell with magnified pictures of some broken fingers and the mechanical surface defect. The red ellipses indicate further cracks in the fingers.

Fig. 2
Fig. 2

Schematic cross section of the solar cells. The three green shaded layers form the active region where the p-n junction is located and the incident light is absorbed.

Fig. 3
Fig. 3

Assumed circuit diagram of the damaged solar cell. Photodiodes and light dependent resistors, representing the active region, are connected to each other by ohmic resistors forming the cap layer.

Fig. 4
Fig. 4

Two normalized SRPS maps of the damaged solar cell measured at laser intensities of 2.1 W/cm2 (left) and 890 W/cm2 (right). The photocurrent distribution becomes more inhomogeneous at high laser intensities.

Fig. 6
Fig. 6

Normalized SRPS map of the upper left-hand quarter of the undamaged solar cell measured at a reverse bias of 0.5 V and a laser intensity of 812 W/cm2. The homogeneous material quality leads to a homogeneous photocurrent distribution.

Fig. 5
Fig. 5

Normalized SRPS maps of the damaged solar cell measured at reverse biases of 2.5 V (top left) and 0.5 V (bottom left), the corresponding simulated SRPS map at 0.5 V (bottom right) and SRIVs at different sites (top right). All maps are plotted with the same color scale.

Fig. 7
Fig. 7

Simulated SRIVs together with the assumed I-V characteristic of the p-n junction (solid lines) and the corresponding experimental SRIVs (dots) for different series resistances. The curves are normalized for a better comparability. Large series resistances in the experimental setup distort the obtained SRIVs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( R s ) = I ( R s = 0 ) 1 R s / R s h .

Metrics